
15

2 The Language C#

C# (pronounced: see sharp) is Microsoft's new programming language for the
.NET platform. Although .NET can also be programmed in many other languages
(for example, Visual Basic .NET, or C++) C# is Microsoft's preferred language; it
supports .NET best and is best supported by .NET.

C# is not a revolutionary new language. It is more a combination of Java, C++
and Visual Basic. The aim has been to adopt the best features of each of these lan-
guages while avoiding their more complex features. C# has been carefully devel-
oped by a small team lead by Anders Hejlsberg. Hejlsberg is an experienced lan-
guage expert. At Borland he was the chief designer of Delphi. He is known to
design his languages with the needs of practitioners in mind.

In this chapter we assume that the reader already has some programming ex-
perience, preferably in Java or C++. While we are explaining the concepts of C#
we will also compare them with Java and C++.

2.1 Overview

Similarities to Java

At first sight C# programs look much like Java programs. Any Java programmer
should be able to read them. As well as having almost identical syntax the follow-
ing concepts have been carried across from Java:

q Object-orientation. Like Java, C# is an object-oriented language with single
inheritance. Classes can inherit from just one base class but can implement
several interfaces.

q Type safety. C# is a type-safe language. Programming errors that arise from
incompatible types in statements and expressions are detected by the com-
piler. There is no arbitrary pointer arithmetic and no unchecked type casts
as in C++. At run time there are checks to ensure that array indices lie in the
appropriate range, that objects are not referenced via uninitialized pointers
and that a type cast leads to a well-defined result.

16 2 The Language C#

q Garbage collection. Dynamically allocated objects are not released by the
programmer, but are automatically disposed of by a garbage collector as
soon as they are no longer referenced. This eliminates many awkward er-
rors that can occur, for example, in C++ programs.

q Namespaces. What Java calls packages C# calls namespaces. A namespace
is a collection of type declarations. It allows the same names for classes,
structures or interfaces to be used in different contexts.

q Threads. C# supports lightweight parallel processes in the form of threads.
As in Java, there are mechanisms for synchronization and communication
between threads.

q Reflection. As in Java, type information about a program can be accessed at
run time, classes can be loaded dynamically, and it is even possible to com-
pose executable programs at run time.

q Libraries. Many types in the C# library resemble those in the Java library.
There are familiar classes such as Object, String, Hashtable or Stream, often
even with the same methods as in Java.

Various features are also taken from C++, for example operator overloading,
pointer arithmetic in system-level classes (which must be marked as unsafe) as well
as some syntactical details, for example in connection with inheritance. From Vi-
sual Basic comes the foreach loop, for example.

Differences from Java

Beside these similarities however, C# has several characteristics that go beyond
Java. Most of them also apply to the other .NET languages,:

q Reference parameters. Parameters can be passed not only by value but also
by reference. Because of this, one can use not only input parameters but
also output and transient parameters.

q Objects on the stack. Whereas in Java all objects are kept on the heap, in
C# an object can also be stored in the method-call stack. Such objects are
lightweight, that is, they make no demands of the garbage collector.

q Block matrices. For numerical applications the Java storage model for
multi-dimensional arrays is too inefficient. C# allows the programmer to
choose whether to have a matrix laid out as in Java (that is, as an array of
arrays) or as a compact block matrix, as in C, Fortran or Pascal.

q Enumerations. As in Pascal or C, there are enumeration types whose values
are denoted by names.

q Goto statement. The much-maligned goto statement has been reintroduced
in C#, but with restrictions that make it scarcely possible to misuse it.

2.1 Overview 17

q Uniform type system. In C# all types are derived from the type object. In
contrast to Java, numbers or character values can also be stored in object
variables. The C# mechanism for this is called boxing.

q Versioning. Classes are given a version number during compilation. Thus a
class can be available in several versions at the same time. Each application
uses the version of a class with which it was compiled and tested.

Finally there are many features of C# that are convenient to use, although they
don't really increase the power of the language. They can be viewed as "syntactic
sugar", because they allow one to do things that are also possible in other lan-
guages, but the way of doing them in C# is simpler and more elegant. Among
them are the following:

q Properties and events. These features facilitate component technology.
Properties are special fields of an object. When they are accessed the system
automatically calls getter or setter methods. Events can be declared and
triggered by components and handled by other components.

q Indexers. An index operation like that for arrays can be declared for cus-
tom collections via getter and setter methods.

q Delegates. Delegates are essentially the same as procedure variables in Pas-
cal or function pointers in C. However, they are more powerful. For exam-
ple, several methods can be stored in a delegate variable at the same time.

q foreach loop. This loop statement can be used for iterating through arrays,
lists or sets in a convenient manner.

q Boxing/unboxing. Values such as numbers or characters can be assigned to
variables of type object. To do this they are automatically wrapped into an
auxiliary object (boxing). On assignment to a number or a character vari-
able they are automatically unwrapped again (unboxing). This feature al-
lows the construction of generic container types.

q Attributes. The programmer can attach metadata to classes, methods or
fields. This information can be accessed at run time by means of reflection.
.NET uses this mechanism, for example, for serializing data structures.

Hello World

Now it is time for a first example. The well known Hello World program looks
like this in C#:

using System;

class Hello {
public static void Main() {

Console.WriteLine("Hello World");

}
}

18 2 The Language C#

It consists of a class Hello and a method Main (Note that upper and lower case let-
ters are considered to be different in C#). Each program has exactly one Main
method, which is called when the program is started. Console.WriteLine("...") is an
output statement, where WriteLine is a method of the class Console that comes
from the namespace System. In order to make Console known, System must be im-
ported in the first line by writing using System;.

The simplest development environment for .NET is Microsoft's Software De-
velopment Kit (SDK). It is command-line oriented. In addition to a compiler (csc)
it provides several other software tools (such as al or ildasm). These are described
in Chapter 8. C# programs are stored in files with the suffix .cs. If we store our
Hello World program in a file Hello.cs it can be compiled by typing

csc Hello.cs

and executed by typing

Hello

The output appears in the console window.
Under .NET the file name does not have to match the class name, although

this is recommended for readability. A file can consist of several classes. In this
case it should be named after the principal class it defines.

Structuring Programs

The source text of a C# program can be spread across several files. Each file can
consist of one or more namespaces. Each namespace can contain one or more
classes or other types. Figure 2.1 shows this structure.

Figure 2.1 Structure of programs

Our Hello World program consists of a single file and a single class. No
namespace is specified. Thus the class Hello belongs to an anonymous default

Program

File1.cs File2.cs File3.cs

namespace A {...} namespace B {...} namespace C {...}

class X {...} class Y {...} class Z {...}

2.1 Overview 19

namespace created for us by .NET. Namespaces are dealt with in Section 2.5 and
2.13; classes in Section 2.8.

Multi-file Programs

If a program consists of several files, they can be compiled either together or sepa-
rately. In the first case a single executable is generated. In the second case an exe-
cutable and one or more DLL (Dynamic Link Library) files are created.

Let's consider a class Counter in a file Counter.cs used by a class Prog in a file
Prog.cs:

public class Counter { // in file Counter.cs

int val = 0;

public void Add(int x) { val = val + x; }
public int Val () { return val; }

}

using System; // in file Prog.cs

public class Prog {

static void Main() {
Counter c = new Counter();

c.Add(3); c.Add(5);

Console.WriteLine("val = " + c.Val());
}

}

We can compile these two files with a single command

csc prog.cs Counter.cs

which creates the executable file Prog.exe that contains both classes. Alternatively
we can make a library (DLL) from Counter by writing:

csc /target:library Counter.cs

In this case the compiler creates a file Counter.dll, and we have to specify it as fol-
lows when compiling Prog.cs

csc /reference:Counter.dll Prog.cs

This compilation also creates a file Prog.exe, but this time it contains only the class
Prog. The class Counter remains in the file Counter.dll and is dynamically loaded
when Prog is invoked. The compilation command and its options are detailed in
Section 8.2.

20 2 The Language C#

2.2 Symbols

C# programs are made up of names, keywords, numbers, characters, strings, op-
erators and comments.

Names. A name consists of letters, digits and the character "_". The first character
must be a letter or a "_". Upper and lower case letters are considered as distinct
(for example, red is not the same as Red). Because C# uses Unicode characters
[UniC], names can also contain Greek, Arabic or Chinese symbols. However, with
Western keyboards these symbols must be input using numeric codes. For exam-
ple, the code \u03C0 denotes π and the name b\u0061ck means back.

Keywords. C# has 76 keywords; Java has only 47. This already suggests that C# is
more complex than Java. Keywords are reserved; that means they cannot be used
as names.

abstract as base bool break byte

case catch char checked class const

continue decimal default delegate do double
else enum event explicit extern false

finally fixed float for foreach goto

i f implicit in int interface internal
is lock long namespace new null

object operator out override params private

protected public readonly ref return sbyte
sealed short sizeof stackalloc static string

struct switch this throw true try

typeof uint ulong unchecked unsafe ushort
using virtual void while

Naming conventions. The following rules should be followed when choosing
names and deciding whether to use upper or lower case. (They are also followed in
the C# class library):

q Names begin with capital letters (e.g., Length, WriteLine) except for local
variables and parameters (e.g., i, len) or fields that are not visible outside
their class.

q In composite words each word begins with a capital letter (for example,
WriteLine). Joining words with "_" is seldom used in C#.

q Methods that do not return a value should begin with a verb (for example,
DrawLine). All other names should generally begin with a noun (for exam-
ple, Size, IndexOf, Collection). Fields or methods of type bool can also begin
with an adjective if they express some boolean value (for example, Empty).

Characters and strings. Character constants are written between single quotes (for
example, 'x'). String constants are written between double quotes (for example,
"John"). In each, any characters can appear except the terminating quote, a line
break or the character \, which is used as an escape character . The following es-

2.2 Symbols 21

cape sequences allow the expression of special characters in character or string
constants:

\ ''

\ ""
\ \ \

\ 0 0x0000 (the character with the value 0)

\a 0x0007 (alert)
\ b 0x0008 (backspace)

\ f 0x000c (form feed)

\n 0x000a (new line)
\ r 0x000d (carriage return)

\ t 0x0009 (horizontal tab)

\v 0x000b (vertical tab)

In order to write, for example

file "C:\sample.txt"

as a string constant we have to write:

"file \"C:\\sample.txt\""

As in names, Unicode values (for example, \u0061) can also be used in character or
string constants.

If a string constant is preceded by the character @, it may contain line breaks,
escape sequences remain unprocessed, and quotes must be doubled. So the above
example can also be written:

@"file ""C:sample.txt"""

Integer constants. They can be expressed in decimal (e.g. 123) or hexadecimal (e.g.
0x007b). Their type is the smallest type from int, uint, long or ulong that their value
will fit into. The suffix u or U (e.g. 123u) defines the constant to be of the smallest
suitable unsigned type (uint or ulong). The suffix l or L (e.g. 0x007bl) indicates that
the value has the smallest type of the set long and ulong.

Floating-point constants. They consist of an integer part, a decimal part and an
exponent (e.g., 3.14E0 means 3.14 * 100). Any of these parts can be omitted, but at
least one must appear. The numbers 3.14, 314E-2 and .314E1 are valid notations
for the same value. The type of a floating-point constant is double. Appending f or
F (e.g. 1f) determines the type to be float. Appending m or M (e.g. 12.3m) deter-
mines the type to be decimal.

Comments. There are two forms of comments: Single-line comments begin with //
and extend until the end of the line, for example:

// a comment

22 2 The Language C#

Delimited comments begin with /* and end with */. They can extend over several
lines but cannot be nested. Example:

/ * a comment

that takes two lines */

Single-line comments are used for short annotations and delimited comments
mainly for commenting-out code.

2.3 Types

The data types of C# form a hierarchy, shown in Figure 2.2. There are value types
and reference types. Value types are primitive types such as char , int or float, as well
as enumerations and structs. Variables of these types directly contain a value (such
as 'x', 123 or 3.14). Reference types are classes, interfaces, arrays and delegates.
Variables of these types hold a reference to an object that is stored in the dynamic
storage area (the heap).

Figure 2.2 Type hierarchy

Uniform Type System

C# has a uniform type system, which means that all types, whether value types or
reference types, are compatible with the type object (see Section 2.3.7): Values of
any type can be assigned to object variables and understand object operations. This
makes it easy to design algorithms that can work with any kind of data. Table 2.1
summarizes the differences between value types and reference types.

types

value types reference types

primitive types

bool
char

sbyte
short
int
long

byte
ushort
uint
ulong

float
double
decimal

enumerations structs classes interfaces arrays delegates

user-defineable types

2.3 Types 23

The type string, used in Table 2.1, is a predefined class and thus a reference type.
Actually string is a keyword that the compiler expands into the class System.String

(that is, the class String in the namespace System). Similarly, object is expanded
into the class System.Object.

2.3.1 Primitive Types

As with all languages, C# has predefined types for numbers, characters and bool-
ean values. Numeric types are divided into integer types and floating-point types.
Within these groups the types differ in range and accuracy. Table 2.2 shows an
overview of all primitive types.

Table 2.1 Value types and reference types

value types reference types

Variable contains

Variable is stored

Assignment

Example

a value

on the method stack or
in the containing object

copies the value

int i = 17;
int j = i;

a reference to an object

on the heap

copies the reference

string s = "Hello";
string s1 = s;

Table 2.2 Primitive types

range of values expanded to

sbyte
short
int
long

-128 .. 127
-32768 .. 32767
-2147483648 .. 2147483647
-263 .. 263-1

System.SByte
System.Int16
System.Int32
System.Int64

byte
ushort
uint
ulong

0 .. 255
0 .. 65535
0 .. 4294967295
0 .. 264-1

System.Byte
System.UInt16
System.UInt32
System.UInt64

float
double
decimal

±1.4E-45 .. ±3.4E38 (32 Bit, IEEE 754)
±5E-324 .. ±1.7E308 (64 Bit, IEEE 754)
±1E-28 .. ±7.9E28 (128 Bit)

System.Single
System.Double
System.Decimal

bool true, false System.Boolean

char Unicode characters System.Char

i 17

j 17

s
s1 H e l l o

24 2 The Language C#

The unsigned types byte, ushort, uint and ulong are mainly used for systems pro-
gramming and for compatibility with other languages. The type decimal allows the
representation of large decimal numbers with high accuracy and is mainly used for
financial mathematics.

The compiler maps all primitive types to struct types defined in the namespace
System. For example, the type int is mapped to System.Int32. All the operations de-
fined there (including those inherited from System.Object) are thus applicable to
int.

There is a compatibility relationship between most of the primitive types. This
is shown in Figure 2.3. An arrow between char and ushort means, for example,
that char values can be assigned to a ushort variable (ushort includes all char val-
ues). The relationship is transitive. That means that char values can also be as-
signed to int or float variables. An assignment to decimal is however only permitted
with an explicit type cast (e.g., decimal d = (decimal) 3;). In assigning values of type
long or ulong to float there can be a loss of accuracy if there are insufficient bits in
the mantissa to represent the result.

Figure 2.3 Compatibility relationship between primitive types.

2.3.2 Enumerations

Enumerations are types whose values are explicitly given by a list of named con-
stants, for example:

enum Color { red, blue, green }

Variables of type Color can take the values red, blue or green, and the compiler
maps these values to the numbers 0, 1 and 2. However, enumerations are not nu-
meric types; they cannot be assigned to numeric variables, and numbers cannot be
assigned to Color variables. If desired, the value of an enumeration constant can be
specified in the declaration, as in

enum Color { red=1, blue=2, green=4 }

enum Direction { left=0, right, up=4, down } // left=0, right=1, up=4, down=5

Enumerations usually occupy four bytes. However, a different type size can be
chosen by writing a (numeric) base type after the enumeration type name. For ex-
ample:

decimal double float long int short sbyte

ulong uint ushort byte

char

2.3 Types 25

enum Access: byte { personal=1, group=2, all=4 }

Variables of type Access are thus one byte long. Enumerations can be used as fol-
lows:

Color c = Color.blue;

Access a = Access.personal | Access.group;

if ((a & Access.personal) != 0) Console.WriteLine("access granted");

When using enumeration constants they must be qualified with their type names.
If values are chosen to be powers of two (as in the type Access) one can form bit
sets using the logical operators &, | and ~. In this way an enumeration variable can
hold a set of values. If an operation yields a value for which there is no enumera-
tion constant, that does not bother the compiler. (for example, Access.personal |
Access.group yields the value 3). The following operations are allowed with enu-
merations:

==, !=, <, <=, >, >= if (c == Color.red) ...

if (c > Color.red && c <= Color.green) ...
+, - c = c + 2;

++, -- c++;

& if ((a & Access.personal) != 0) ...
| a = a | Access.group;

~ a = ~ Access.all; // one's complement

As with the logical operations, an arithmetic operation can yield a value that does
not map to any enumeration constant. The compiler accepts this.

Enumerations inherit all the operations of object, such as Equals or ToString
(see Section 2.3.7). There is also a class System.Enum that provides special opera-
tions on enumerations.

2.3.3 Arrays

Arrays are one- or multi-dimensional vectors of elements. The elements are se-
lected by an index, where the indexing begins at 0.

One-dimensional arrays. One-dimensional arrays are declared by stating their ele-
ment type followed by empty square brackets:

int[] a; // declares an array variable a

int[] b = new int[3]; // initializes b with an array of 3 elements, all 0

int[] c = new int[] {3, 4, 5}; // initializes c with the values 3, 4, 5
int[] d = {3, 4, 5}; // initializes d with the values 3, 4, 5

SomeClass[] e = new SomeClass[10]; // creates an array of references

SomeStruct[] f = new SomeStruct[10]; // creates an array of values (directly in the array)

An array declaration does not allocate storage. Therefore it does not specify an ar-
ray length. In order to create an array object one has to use the new operator with

26 2 The Language C#

the desired element type and length. For example, new int[3] creates an array of
three int elements. The values of a newly created array are initialized to 0 (or '\0',
false, null as appropriate), except when explicit initial values are specified in curly
braces. In the declaration of an array the initialization can also be given directly
(without using the new operator), in which case the compiler creates an array of
the necessary length.

Note that an array of classes contains references, whereas an array of structs
holds the values directly.

Multi-dimensional arrays. Multi-dimensional arrays can either be jagged or rect-
angular. Jagged arrays hold references to other arrays, whereas the elements of
rectangular arrays form a contiguous block of memory (see Figure 2.4). Rectangu-
lar arrays are not only more compact, but also allow a more efficient indexing.
Here are some examples of multi-dimensional arrays:

// jagged arrays (declared with [][])

int[][] a = new int[2][]; // two rows, the columns of which are still undefined

a[0] = {1, 2, 3}; // row 0 has three columns
a[1] = {4, 5, 6, 7, 8}; // row 1 has five c olumns

// rectangular arrays (declared with [,])
int[,] a = new int[2, 3]; // two rows with three columns each

int[,] b = {{1, 2, 3}, {4, 5, 6}}; // initialization of the two rows and three columns

int[,,] c = new int[2, 4, 2]; // two b locks with four rows with two columns each

In jagged arrays the rows can have different lengths. For this reason only the
length of the first dimension is specified in the new operation and not the length of
all dimensions, as with rectangular arrays. Figure 2.4 shows the difference be-
tween the two styles of arrays:

Figure 2.4 Jagged and rectangular multi-dimensional arrays.

Array operations. As can be seen from Figure 2.4, arrays variables hold references.
Therefore an array assignment is a reference assignment , i.e., the array itself is not
copied. Indexing always begins at 0. The length of an array can be determined
with the Length operator.

jagged (as in Java)

int[][] a = new int[2][];
a[0] = new int[3];
a[1] = new int[4];
int x = a[0][1];

rectangular

int[,] a = new int[2, 3];
int x = a[0, 1];

a[0]

a[1]

a a[0][1]

a a[0,1]

2.3 Types 27

int[] a = new int[3];
int[][] b = new int[2][];

b[0] = new int[4];

b[1] = new int[4];
Console.WriteLine(a.Length); // 3

Console.WriteLine(b.Length); // 2

Console.WriteLine(b[0].Length); // 4

In rectangular arrays Length gives the total number of elements. In order to get the
number of elements in a certain dimension one must use the GetLength method.

int[,] a = new int[3, 4];

Console.WriteLine(a.Length); // 12

Console.WriteLine(a.GetLength(0)); // 3
Console.WriteLine(a.GetLength(1)); // 4

The class System.Array contains some useful operations for copying, sorting and
searching in arrays.

int[] a = new int[2];

int[] b = {7, 2, 4};
Array.Copy(b, a, 2); // copies b[0..1] to a

Array.Sort(b); // sorts b into ascending order

Variable-length arrays. Once an array has been allocated, its length is fixed. How-
ever, there is a class System.Collections.ArrayList that implements arrays of variable
length (see Section 4.1.5). The method Add can be used to add elements of any
type to the array. The elements can then be selected by indexing:

using System;

using System.Collections;

class Test {

static void Main() {

ArrayList a = new ArrayList(); // creates an empty array of variable length
a.Add("Alice"); // appends "Alice" to the end of the array

a.Add("Bob");

a.Add("Cecil");
for (int i = 0; i < a.Count; i++) // a.Count returns the number of elements

Console.WriteLine(a[i]); // output: "Alice", "Bob", "Cecil"

}
}

Associative arrays. The class System.Collections.Hashtable allows arrays not only
to be indexed by numbers but also, for example, by strings:

28 2 The Language C#

using System;
using System.Collections;

class Test {
static void Main() {

Hashtable phone = new Hashtable(); // creates an empty associative array

phone["Jones"] = 4362671;
phone["Miller"] = 2564439;

phone["Smith"] = 6451162;

foreach (DictionaryEntry x in phone) { // foreach: see Section 2.6.9
Console.Write(x.Key + " = "); // key, e.g. "Miller"

Console.WriteLine(x.Value); // value, e.g. 2564439

}
}

}

2.3.4 Strings

Character arrays (strings) occur so often that C# provides a special type string for
them. The compiler expands this into the class System.String. A string constant or
a string variable can be assigned to another string variable:

string s = "Hello";

string s2 = s;

Strings can be indexed like arrays (e.g., s[i]), but they are not actually arrays. In
particular, they cannot be modified. If one needs strings that can be modified one
should use the class System.Text.StringBuilder instead:

using System;
using System.Text;

class Test {
static void Main(string[] arg) {

StringBuilder buffer = new StringBuilder();

buffer.Append(arg[0]);
buffer.Insert(0, "myfiles\\");

buffer.Replace(".cs", ".exe");

Console.WriteLine(buffer.ToString());
}

}

This example also shows that the Main method can be declared as having a string
array parameter to which command-line arguments are passed. If the above pro-
gram were to be called as

Test sample.cs

the output would be myfiles\sample.exe.

2.3 Types 29

Strings are reference types, that is, a string variable holds a reference to a string
object. String assignments are therefore reference assignments; the value of the
string is not copied. However, the operations == and != are, in contrast to Java,
value comparisons. The comparison

(s+ " World") == "Hello World"

returns the value true. The compare operations <, <=, >, >= are not allowed for
strings; instead, the method CompareTo must be used (see Table 2.3). Strings can
be concatenated with + (e.g., s + " World" gives "Hello World"). This creates a new
string object (so s is not changed). The length of a string can be obtained by using
s.Length, as for arrays. The class System.String offers many useful operations (see
Table 2.3):

2.3.5 Structs

Structs are user-defined types that hold data and possibly methods. They are de-
clared as follows:

struct Point {
public int x, y; // fields

public Point(int a, int b) { x = a; y = b; } // constructor

public void MoveTo(int x, int y) { this.x = x; this.y = y; } // method
}

Structs are value types . Therefore variables of type Point hold the values of the
fields x and y directly. An assignment between structs is a value assignment and
not a reference assignment.

Point p; // p is so far uninitialized

p.x = 1; p.y = 2; // field access

Point q = p; // value assignment (q.x == 1, q.y == 2)

Table 2.3 String operations (extract)

operation returns

s.CompareTo(s1)
s. IndexOf(s1)
s.LastIndexOf(s1)
s.Substring(from, length)
s.StartsWith(s1)
s.EndsWith(s1)
s.ToUpper()
s.ToLower()
String.Copy(s)

-1, 0 or 1 according to whether s < s1, s == s1 or s > s1
the index of the first occurrence of s1 in s
the index of the last occurrence of s1 in s
the substring s[from..from+length-1]
true if s starts with s1
true if s ends with s1
a copy of s in upper-case letters
a copy of s in lower-case letters
a copy of s

30 2 The Language C#

Structs can be initialized with a constructor. The declaration

Point p = new Point(3, 4);

declares a new struct object p on the stack and calls the constructor of Point, which
initializes the fields to the values 3 and 4. A constructor must always have the
same name as the struct type. The method MoveTo is called as follows:

p.MoveTo(10, 20);

In the code of the called method the object p, on which the method was called, can
be referred to by this (the so-called receiver of the message MoveTo). Thus this.x de-
notes the field x of the object p, whereas x denotes the formal parameter of the
method MoveTo. When there is no ambiguity this can be omitted from the field ac-
cess, as above in the constructor of Point.

Structs may not declare parameterless constructors. However, a parameterless
constructor may be used on structs, because the compiler creates one for every
struct type. The constructor in the declaration

Point p = new Point();

initializes the fields of p with the value 0. Section 2.8 goes into further detail on
structs and constructors.

2.3.6 Classes

Like structs, classes are types consisting of data and methods. In contrast to
structs, however, they are reference types. That is, a variable of a class type holds a
reference to an object that is stored in the heap. Classes are declared as follows:

class Rectangle {
Point origin; // bottom-left corner

public int width, height;

public Rectangle() { origin = new Point(0, 0); width = height = 1; }
public Rectangle(Point p, int w, int h) { origin = p; width = w; height = h; }

public void MoveTo(Point p) { origin = p; }

}

A Rectangle variable can only be used if a Rectangle object has been installed in it:

Rectangle r = new Rectangle(new Point(10, 20), 5, 5);

int area = r.width * r.height;

Whenever an object is created with the new operator the appropriate constructor
is automatically called. This initializes the fields of the object. The class Rectangle
has two constructors that differ in their parameter lists. The parameters of the sec-
ond constructor match the actual parameters of the new operator in the example
above and so this constructor is chosen. The declaration of constructors or meth-

2.3 Types 31

ods with the same name in a class is called overloading. This will be discussed fur-
ther in Section 2.8.

Created objects are never explicitly released in C#. Instead this task is left to
the garbage collector, which automatically releases objects once they are no longer
referenced. This removes the source of many awkward errors that C++ program-
mers have to struggle with: if objects are released too soon, some references may
point into a void. On the other hand, if a C++ programmer forgets to release ob-
jects they remain as "memory leaks". Under .NET such errors cannot occur, be-
cause the garbage collector takes care of releasing objects.

Because a variable of a class type holds a reference, the assignment

Rectangle r1 = r;

is a reference assignment: afterwards r and r1 point to the same object. Methods
are called as for structs:

r.MoveTo(new Point(3, 3));

In the implementation of the method MoveTo the predefined name this again de-
notes the object r on which the method was called. Because the field name origin is
unambiguous there it does not need to be qualified as this.origin.

Table 2.4 compares classes and structs again. Some of these differences are
covered in detail in later sections.

Structs are lightweight types that are often used for temporary data. Because they
are not stored on the heap they do not burden the garbage collector. Classes are
mainly used for more complex objects that are often linked into dynamic data
structures. Objects of a class can outlive the methods that created them.

Table 2.4 Classes versus structs

classes structs

reference types
(variables reference objects on the heap)

support inheritance
(all classes are derived from object)

can implement interfaces

parameterless constructor can be declared

value types
(variables contain objects)

do not support inheritance
(but are compatible with object)

can implement interfaces

parameterless constructor cannot be declared

32 2 The Language C#

2.3.7 object

The type object, which is expanded into System.Object, has a special meaning in
C#. It is the root of the entire type hierarchy. That means that all types are com-
patible with it. So a value of any type can be assigned to an object variable:

object obj = new Rectangle(); // assignment of Rectangle to object
Rectangle r = (Rectangle) obj; // type cast

obj = new int[3]; // assignment of int[] to object

int[] a = (int[]) obj; // type cast

In particular, object allows the implementation of generic container classes. For ex-
ample, a stack that stores objects of any type can have a method

void Push(object x) {...}

that can then be called with parameters of any type:

Push(new Rectangle());
Push(new int[3]);

The class System.Object (covered in detail in Section 2.9.8) contains several meth-
ods that are inherited by all classes and structs (and are mostly overridden). The
most important methods are:

class Object {

public virtual bool Equals (object o) {...} // compares the values of the receiver and o

public virtual string ToString() {...} // converts the object into a string
public virtual int GetHashCode() {...} // calculates a hash code for the object

...

}

These methods can be applied to objects of any type and even to constants:

string s = 123.ToString(); // s == "123"

2.3.8 Boxing and Unboxing

Not only reference types are compatible with object but also value types such as
int, structs or enumerations. In the assignment

object obj = 3;

the value 3 is wrapped up by an object of a temporary class that is then assigned to
the variable obj (see Figure 2.5). This is called boxing.

Figure 2.5 Boxing of an int value

obj

3

2.4 Expressions 33

Assignment in the opposite direction needs a type cast:

int x = (int) obj;

In this, the value is unwrapped from the temporary object and treated as an int
value. This is called unboxing.

Boxing and unboxing are particularly useful with container types because
these can then be used not only with elements of reference types, but also with el-
ements of value types. For example, if a class Queue has been declared as follows:

class Queue {

object[] values = new object[10];

public void Enqueue(object x) {...}
public object Dequeue () {...}

}

it can be used like this:

Queue q = new Queue();

q.Enqueue(new Rectangle()); // used with a reference type

q.Enqueue(3); // used with a value type (boxing)
...

Rectangle r = (Rectangle) q.Dequeue(); // type cast: object -> Rectangle

int x = (int) q.Dequeue(); // type cast: object -> int (unboxing)

Calls to object methods are forwarded to the boxed object. For example, the code
fragment:

object obj = 123;

string s = obj.ToString();

assigns the value "123" to s.

2.4 Expressions

Expressions consist of operands and operators and calculate values. Table 2.5
shows the operators of C# ordered by priority. Operators higher up in the list
have priority over operators lower down in the list. Binary operators at the same
level are evaluated from left to right in an expression, for example:

... a + b - c ... // ... (a + b) - c ...

The unary operators +, -, !, ~, as well as type casts are right-associative, that is,
they are evaluated from right to left, for example:

... - (int) x ... // ... - ((int) x) ...

