56
Web Services Overview

Web Services Overview
55

Visual Basic.NET
Overview

[image: image1.png]B Contents

= Section 1: Overview

= Section 2 Language Features

= Section 3 Integration into NET
= Section 4 Putting | All Together
= Summary

Objectives

This module introduces the new version of Microsoft® Visual Basic®. It was redesigned from the ground up to integrate into the Microsoft .NET Framework. With the addition of advanced features, Visual Basic.NET is now a complete object-oriented development tool.

This module assumes you have at least some working knowledge of earlier versions of Visual Basic. This module presents the new language features of Visual Basic and its positioning within the .NET Framework.

What You Will Learn

· Overview of the new features

· Changes to the preceding version of the language

Related Topics Covered in This Lesson

· Concepts of .NET that are the reason for the changes

· Framework services

Recommended Reading

· MacKinsey, Duncan. Teach Yourself Visual Basic.NET in 21 Days. Indianapolis, IN: Sams, 2001.

· Hollis, Billy, and Rockford Lhotka. VB.NET Programming with the Public Beta. Birmingham, UK: Wrox Press, 2001.

Section 1: Overview

[image: image2.png]B Section 1: Overview

= Make the language even easier to use
- .atlaast easierto leam

= Get i of some design flaws.
= Ackd 0l set of object-oriented programming features
=Make it frst-class ciizen ofthe .NET warld

=._but dorit reinvert the language

Section 1: Overview

Make the language even easier to use

Visual Basic has been the most widely used language on the Microsoft Windows® platform since it was introduced. And the advent of Visual Basic 4 with its support for OLE 2.0 and particularly Automation made it even more successful.

However, Microsoft and hence the Windows platform is shifting from a mere desktop operating system to a more Web service–oriented system. This shift recognizes the reality that applications are beginning to migrate from a standalone executable sitting on a user's hard drive to a distributed application delivered by a Web server across the Internet. A key part of Microsoft's thrust into this new Web services space is the .NET Framework. The .NET Framework is designed from the ground up to allow developers to easily write and deploy complex Web applications.

Visual Basic 6 has a lot of ties to its ancestor GW Basic. New features were added over time that did not conserve the original style. So there were a lot of inconsistencies and backward-compatibility issues that prevented Visual Basic from becoming a well-structured language. Since the integration into .NET required some changes, this was the right time to get rid of the major problems. That does not mean that Visual Basic is now just another language like C++. The main reason for using Visual Basic used to be its simplicity in terms of hiding all the dirty details of system programming, and this reason is still alive.

Get rid of some design flaws

Most of the irregularities and inconsistencies that used to be a constant source of discontent could be eliminated. One example: who did not find it annoying that calling a Sub required the use of parentheses around the parameter list when using the Call MySub syntax, but that these parentheses were illegal when omitting the Call keyword?

Add full set of object-oriented programming features

Sure, Visual Basic 6 had a concept of classes, even a well-hidden concept of inheritance (when “overriding” the properties and events of a control), but it was not possible to have user-defined class hierarchies, explicit use of interfaces, or multiple inheritance.

Visual Basic.NET adds the full palette of object-oriented programming to the language. But still it is not necessary that these object-oriented features be used in depth. They are a true add-on to the language.

Make it a first-class citizen of the .NET world

The programmer who uses Visual Basic will be able to take advantage of all features that the .NET Framework offers. The components that are written in Visual Basic can easily interact with other .NET components written in different languages. To enable this interoperability some changes to the language and its runtime became necessary: all languages have to share the same type system, they have to use the same .NET Framework classes, and finally—and this is not directly visible to the user—they make use of the same run-time format, security, and versioning scheme.

…but don’t reinvent the language

Microsoft invested a lot of work to keep the language as close as possible to its original state. However, the few things that make Visual Basic look like a different development tool now are worth the effort because of the advantages offered.

 Section 1: Overview

[image: image3.png]B First-Class Object Orientation

= Concept of classes and iterfaces
- Inheitance
- Ouerosding
- Shared membes
- Constructors and intisizers
Erey
[

= Object-crerted event system

First-Class Object Orientation

Inheritance

The concept of inheritance is the premier tool to achieve code reuse on the one hand and a well-formed structure of a program on the other. The underlying concept of a class describes a unit consisting of data and routines working on or with that data. By merely declaring an inheritance relationship between one class and another, the inheriting class gets all the functionality the inherited class provides—for free. And then in the inheriting class, functionality can be added, changed, or fine-tuned for specific needs.

The inherited class is said to be the base class; the inheriting class is said to be the derived class.

Overloading

Overloading a procedure means defining it in multiple versions, using the same name but different signatures, that is, different types of parameters. The purpose of overloading is to define several closely related versions of a procedure without having to differentiate them by name.

Interfaces

Interfaces describe a set of properties and methods and events, but unlike classes, interfaces do not provide implementations. Interfaces are a way for you to define protocols—they represent a contract that the implementer of the protocol agrees to.

By defining features in terms of interfaces composed of small groups of closely related functions, you can implement component features as needed, knowing that you can expand them later by implementing additional interfaces. Maintaining compatibility is simplified, because new versions of a component can continue to provide existing interfaces while you add new or enhanced interfaces.

Shared members

Shared members are common to all instances of a component, while instance members can have different values for each component instance. Shared properties and fields are sometimes called class data. Properties and fields that have different values for each component instance are sometimes called instance data.

Constructors and initializers

Constructors are procedures that control initialization of new objects. Common initialization tasks include opening files, connecting to a database, and reading the values of registry keys. Initializers are parameters for the constructor that can be used to set some values or trigger some functionality during initialization. Used together, constructors and initializers support the creation of robust and predictable class libraries.

Object-oriented event system

Derived classes inherit events and event handlers defined the base class.

Section 1: Overview

[image: image4.png]B Inheritance Concepts

= Cancept of Reuse.
- Composition (HasA)
by Fom Hos.Aort.
- Inheritince (124)
“hyFom Ay Fom
=Buikding Type Hierarchiss
= Versioning
=Polymorphism

MyFerm,

ot

e

P

4

i

Inheritance Concepts

Concept of Reuse

One form of reuse of the implementation effort to build a component or a class can be to include the component as a member within the new class or component. Tasks that can be fulfilled by the included class are then delegated to it.

By inheriting a class, the new derived class automatically supports all features of the base class. No further action like “delegator” functions are required.

Building Type Hierarchies

Inheritance allows not only for some selected relationships but also for extensive hierarchies of types. This possibility can be a blessing or a curse. One has to be careful when constructing these hierarchies. You should use inheritance relationships when the relationship is close and can be expected to stay close; otherwise use the composition scheme.

Versioning

When building a new version of a component, inheriting from the old version is a convenient way to keep all existing contracts and modify or add only as much as necessary. The new component will serve as a full substitute for the old because an instance of a derived class will work anywhere an instance of the base class was required. This is known as polymorphism.

Polymorphism

The traditional way to use polymorphism in Visual Basic was with interfaces. Interfaces can still be used for this purpose, but you now have the option of using inheritance to provide polymorphism. As with other object-oriented issues, there are advantages to both interfaces and inheritance. You should use inheritance when you want to create baseline functionality that derived classes can extend. Interfaces are better in situations where similar functionality needs to be provided by multiple implementations that have little in common.

 Section 2: Language Features

[image: image5.png]B Section 2: Language Features

= Type System
= Classes and Inhertance
=Exception Handing
=Event Concept
=Changes

Language Features

Type System

Types can describe values and objects. When they are associated with a value, they describe how the binary representation of that value is to be interpreted.

Objects have rather more to them than do values. In this case, types describe the contract that the object has to fulfill.

Each object is self-typing, that is, its type is explicitly stored in its representation. It has an identity that distinguishes it from all other objects, and it has slots that store other entities (which may be either objects or values). While the contents of its slots may be changed, the identity of an object never changes.

Classes and Inheritance

A class is the type of an object. These types can have inheritance relationships. Since this is a completely new concept to Visual Basic, we will explore this matter in depth.

Exception Handling

Since it is necessary to deal with run-time errors that cannot be avoided altogether, the language offers some features to deal with these error conditions in a graceful way, that is, without crashing the application.

Event Concept

Events are not a new concept to Visual Basic, but because the event model is now based on the .NET Framework’s intrinsic event model, we give a brief description of the new features here.

Changes

This new version of Visual Basic does not just add new features. Mainly because of the integration into the .NET Framework, some changes became necessary in addition to a long-expected review and redesign of certain inconsistencies and irregularities within the language.

Section 2: Language Features

[image: image6.png]B Type System

= Usesthe NET common type system
“No nesd for mashaling betueen languages
= Every type i either a value or areference type

“Value types:
< Primbives, snumarations, ctures
- Reference Types:
- Casses, modtes, netaces, amays, deegates, and stings
- Bbject can contin both
«Evenytting impily iherks fom System Objct

Type System

Uses the .NET common type system

The underlying .NET type system is one pillar of the interoperability of .NET. Common types in all supported languages ensure that the instances of these values and objects are easily interchangeable.

Every type is either a value or a reference type

With one exception, types in the .NET Framework are divided into two categories: value types and reference types. Enumerated, structure, and the primitive types are value types. Class types, standard module types, interface types, array types, and delegate types are reference types. The root type Object, which is an alias for System.Object, is special in that it is a reference type that also can contain a value type. The value type is then wrapped by a reference and said to be “boxed”.

Section 2: Language Features

[image: image7.png]B Primitive Types

= Integral Types
- Byte 8 bit), Short (15 5i8)
“Itegar (32 bit) Long (89 518
=Floating-Poirt Types
- Single (4 bytes), Double @ bytes)
= Exact Numeric Type
- Decimal 22 digie) Geplaces Currency)
=Boolean, Date, Char
= String (Reference Type!)
= Signed bytes and unsigne integers not supportedt

Primitive Types

Integral types

Visual Basic.NET supports integer number types ranging from 8 to 64 bits.

The Byte types are 8 bits wide, and Short types hold 16 bits, while the Integer type holds 32 bits.

Unlike C/C++, the Long type in Visual Basic.NET is always 64 bits wide, providing an ample value range for almost any usage scenario.

Floating-point types

There are two different floating-point types: Single, which is a 4-byte numeric value, and Double, which is an 8-byte value. Both types are IEEE compatible and are identical with the Framework types System.Single and System.Double, respectively.

Exact numeric type

For exact calculation there is a numeric type Decimal, which can hold 28 digits. This type replaces the Currency type, which was less accurate and less flexible.

Boolean, Date, Char

The Boolean type represents one of the two states “true” or “false.” A Boolean variable can be set via the keywords True and False or from the outcome of an expression.

When other numeric types are converted to Boolean values, 0 becomes False and all other values become True. When Boolean values are converted to other data types, False becomes 0 and True becomes -1. The latter is in contrast to other .NET languages, where the numeric counterpart of True is 1. This difference is for backwards compatibility with older versions of Visual Basic. When the value is passed to other languages, the numeric value is a (positive) 1.

Date variables are stored as IEEE 64-bit (8-byte) long integers that represent dates ranging from 1 January 1 CE (the year 1) to 31 December 9999 and times from 0:00:00 to 23:59:59.

Char variables are stored as 16-bit (2-byte) numbers ranging in value from 0 to 65535. Each 2-byte number stores a single Unicode character. Implicit conversions between the Char data type and numeric types are not possible, but explicit conversion between the Char data type and numeric types is supported.

String

A string can contain up to approximately 2 billion (2 ^ 31) Unicode characters. It seems natural that such a potentially large structure is a reference type.

Signed bytes and unsigned integers not supported

It is important note is that signed bytes and unsigned integral types are not supported in Visual Basic.NET. As a result, there are four value types in the type system that are illegal to use in a program: System.SByte, System.UInt16, System.UInt32, and System.UInt64. Any reference to these types will generate an error.

Section 2: Language Features

[image: image8.png]B Enumerations

= Symbolic name for @ set of vales.
= Strongly typed
= Based on integral type
- Byte, Short, Intager, or Lang
~Iteger s default
Example: Enum color s Byte
ved
Yeltow

green
End Enm

Enumerations

Symbolic name for a set of values

An enumeration (Enum) is a special form of value type, which inherits from System.Enum and supplies an alternate name for an underlying primitive type. An Enum type has a name, an underlying type, and a set of fields. The fields are static literal fields, each of which represents a constant. Each field is assigned a specific value of the underlying type by the language compiler. Multiple fields can be assigned the same value. When this occurs, the compiler marks exactly one of the Enum values as a “primary” Enum value for the value, for the purposes of reflection and string conversion.

Strongly typed

Enumerations are always strongly typed and not interchangeable with integer number types.

Based on integral type

The underlying type must be one of the built-in integer types (Byte, Short, Integer, or Long).

 Section 2: Language Features

[image: image9.png]B Arrays

=Buik on .NET System.Array class
= Defined withtype and shape

Di Onevimnsion0) 45 Mnceger
Bl Teobiimnstons (20, Itia1) As Inceger

= Declaration anly sytax

Dim anarray O as mteger
Rebin anArTay (1)

= Lower bound index is always zero
= Fixed size nolonger supportedt
=Rank cannot be changed

Arrays

Built on .NET System.Array class

All arrays declared in Visual Basic.NET are based on the .NET Framework’s System.Array class and thus have all of its capabilities, such as sorting and searching.

Declared with type and shape

When an array is declared, the underlying type and rank must be specified.

Declaration only syntax

Because arrays in Visual Basic.NET are indeed objects and reference types, they do not require their bounds to be specified at declaration time.

Lower bound is always zero

Arrays in Visual Basic.NET are strongly typed and zero based. This means that the first element of each dimension in the array can be found at the index position 0. The number of elements of an array declared with Dim anArray(10) as Integer is 11: the number given is treated as the highest index.

Fixed size no longer supported

In Visual Basic 6.0, you can specify the size of an array in its declaration, as in the following example:

Dim Month(0 To 11) As Integer

This causes the array to have a fixed size, which cannot be changed with the ReDim statement. This is no longer supported.

Rank cannot be changed

Although the size of an array can change in Visual Basic.NET, the number of dimensions must be fixed.

Section 2: Language Features

[image: image10.png]B Interfaces

= Declare semartic contracts between partiss
- Enable component renttion

= Define structure and semartics for specifc purpose

= abstract defintions of methods and properties

= Support (mutiple) inheritance

=Example; Tnterface Tersonage
Property YearofBirthO & nteger
Function GetageToday O As nteger

End Interface

Interfaces

Declare semantic contracts between parties

Interfaces describe a set of properties and methods and events. Interfaces are a way for you to define protocols—they represent a contract that the implementer of the protocol agrees to.

Define structure and semantics for specific purpose

By defining features in terms of interfaces composed of small groups of closely related functions, you can implement component features as needed, knowing that you can expand them later by implementing additional interfaces.

Abstract definitions of methods and properties

Unlike classes, interfaces do not provide implementations. They are solely abstract definitions.

Support (multiple) inheritance

Interfaces can be inherited to classes directly or to other interfaces. Maintaining compatibility is simplified, because new versions of a component can continue to provide existing interfaces while you add new or enhanced interfaces.

Classes can inherit from a single base class, but from multiple interfaces. Because of this, the functionality of a class can be constructed from building blocks, each dealing with a separate field of operation.

 Section 2: Language Features

[image: image11.png]B Classes

= Concept for objects: data an code:
= Classes cortain members.
- Dats members: variabls, constants

- Propertias: valuss acoessed through gatiset
methads

- Methods: functonalty for objector class
+Subs and Functions
- Spesias: evens, delegates, constuctor
= Concept of Overloaing
- Mathod Duerloads another
+With sama rame, bt diferet parameters

Classes

Concept for objects: data and code

Classes are the core concept for object-oriented applications. A class groups data and all code that handles this data into a tightly coupled unit.

Classes contain members
Classes may contain the following elements:

· Variables and constants are specified with their type and a name and the desired access protection level. Variables may be assigned a default value at declaration time using an expression like:

 public Integer myValue = 7

Constants must be given a value at declaration time.

· A property (we’ll explore them in more detail a bit later) is a named value that acts and feels like a variable for consumers of the class, but is implemented using a pair of get/set methods.

· Methods are Subs or Functions that implement the logic of the class and contain its code.

· Further possible class elements are delegates and events, which we’ll also learn about in detail in a short while on following slides.

Shared vs. instance members

Shared members are common to all instances of a class, while instance members can have different values for each class instance. Shared properties and fields are sometimes called class data. Properties and fields that have different values for each class instance are sometimes called instance data.

Section 2: Language Features

[image: image12.png]B Accessibility

= Each member can have its own accessibity
< Frivte
*Restictad o cortes of dactaration
- Protected (dlass members onh)
«Addonal acosss by dared casses
- Frisnd
+ocess from same sssambly
« Protected Friznd
+Union of Protected and Fiand scsess
- Pusic
Mo resvitions

Accessibility

Each member can have its own accessibility

Each member of a class or structure can have its distinct accessibility assigned. The accessibility determines in which context a member can be invoked.

Private

A member declared Private can be accessed within the scope of the declaration. That can be a class or structure, but also a module level.

Protected

Protected members of a class are accessible from within the scope of the class itself and from derived classes.

Since derivation is not allowed with structures, this does not apply to them.

Friend

Friend members are accessible from within the assembly where the declaration is placed. An assembly is somewhat like a library and is explained later.

Protected Friend

This is a combination of the two: Friend access and Protected access. This can be useful, since a derived class must not reside within the same assembly.

Public

No restrictions are imposed on a Public member.

Section 2: Language Features

[image: image13.png]I Properties

=Nt & storage location—can be computed
ubTic Class sample
rivate mval 2s Drteger
PibTic Property W10 3 Trteger
reurn wal
End ot
vl = e
End et
End property
End Clase
= Usage lie data members
el = sampleval

= Can be ReadOnly or WritaDrly

Properties

Not a storage location—can be computed

Properties are a mix between data members and methods. For any consumer (or client) or the class’s instances, properties look and feel much like data members in that they can be accessed in very much the same way.

Usage like data members

You assign values to them and can retrieve values for them by just specifying their name in an expression.

Inside the class, though, properties are implemented using a pair of Get and Set methods.

The Get method must return a value of the property’s type, while the Set method has an implicit parameter “value” through which it receives the value the caller wishes to assign to the property.

Inside both methods, the code may be written in any shape or fashion.

If you wish to make a property read-only, declare it ReadOnly and omit the Set method. Similarly, if you want to make a property write-only, declare it WriteOnly and omit the Get method.

Can be indexed

Properties can be indexed by parameters. This can be used as a grouping of properties or additional information how to compute or store the value.

Section 2: Language Features

[image: image14.png]B Sample Class Definition

Pl
i Frer Gurtemr A2 String

Al et 0 0

Ric Ouerloats sub werlEl ar 5 Tk
e

ARG 50 Dl € 2 > Tl Ztomr.

Sample Class Definition

In this sample a class Customer is declared that derives from the class Person and implements the interface ICustomer.

The class implements a member CustomerNo, which is a String. The keyword Private means that this member cannot be accessed from methods other than those of the class itself.

To have access to this member, a property Customer is defined with corresponding Get and Set methods. The Get method just delivers the value of the CustomerNo member via the Return statement. This statement resembles the C style of function return statements. The Visual Basic–style propertyname = value is still supported, but usually the Return statement is easier to find. The Return statement works with properties and functions and returns the control flow to the caller immediately, meaning that code following a Return statement is never executed. That is a difference from the Visual Basic–style value return statement.

The class Customer implements two constructors, one without and one with a single Integer parameter. The one without parameters is called the default constructor. Of course constructors can have an arbitrary number of parameters. Since there is more than one member with the same name, both constructors must be declared with the keyword Overloads.

On entry of a constructor, the base class’s default constructor is called, regardless on the actual signature. To redirect the call to a different constructor, the statement MyBase.New(…) must be used. This statement must be the first statement in the constructor.

The Sub DoAny is an implementation of a method with the same parameter list in the ICustomer interface. Actually, since it is clear for which method of which interface this is an implementation, the name of the implementation method may be different from the interface’s method name. This allows for implementing more than one interface with occasionally equal method signatures.

Section 2: Language Features

[image: image15.png]B Inheritance 12

= Single base class, but muliple base interfaces
Pubic Class berivedclass
“Inher 185 Easectass
Implements Tmasel, Tmase2
End Q155
= Abstract base classes
PubTic mistImherit Class sbstractiase

End class
= Nonnheritable classes
PubTic NotImher table Class Fimlclass

End crass

Inheritance (1/2)

Single base class, but multiple base interfaces

Classes can inherit from a single base class only. Classes and structures can implement an arbitrary number of interfaces.

Abstract base classes

Abstract classes can only serve as a base for other classes—they cannot be instantiated. Declaring a class with the modifier MustInherit marks this class as abstract. To use the functionality of this class, you must declare a class inheriting from the abstract base class and instantiate this derived class. You do not need to add or modify functionality.

Non-inheritable classes

Under certain circumstances it can be useful to prohibit using a class as a base class. That can be achieved by declaring the class as NotInheritable.

Section 2: Language Features

[image: image16.png]B Inheritance a2

= Overrides
- Method overides ancther with same signature
=Hotoverridable (defout)
- Cannot be overidden
=Mustoverride
- Must be overidden —empty method body
= Qualified access
- MyCiass, MyBase

Inheritance (2/2)

Overloads

Overloading a procedure means defining it in multiple versions, using the same name but different signatures, that is, with the same name, but different parameter types, count, or order. The purpose of overloading is to define several closely related versions of a procedure without having to differentiate them by name.

You can overload a Function with a Sub, and the other way around, provided they have different argument lists.

You can overload properties the same way as Functions and Subs, given that they use parameters, since otherwise they would have the same signature.

Overridable, Overrides

To allow overriding of a member property or method, you must declare it with the keyword Overridable. To actually override a method or property in the derived class, the member must be explicitly declared with the keyword Overrides. These provisions make sure that no accidental override can occur.

NotOverridable, MustOverride

To prevent a property or method from being overridden, it can be declared with the keyword NotOverridable. Public members are NotOverridable by default.

Public member variables cannot be overridden. Private member variables can be overridden without any declaration.

Qualified access

To differentiate between the members defined in the class itself or in the base class, qualifiers are provided: MyClass addresses members declared in the class; MyBase addresses inherited members. There is no direct way to address members, which are overridden multiple times in a type hierarchy. You have to provide access functions for this purpose—or better, reconsider your hierarchy.

 Section 2: Language Features

[image: image17.png]B Structures

= User-defined types—replace Type
= Lightweight *Classe:
- Consists of the same members
I value types, Classes are reference types
- Can implament Itertaces
- Can not be nherited

Tt et Towwmr
et
T

Structures

User-defined types—replaces Type

Visual Basic considers structures and user-defined types to be the same type of programming element. Visual Basic.NET updates the structure declaration for unification and improved readability.

In Visual Basic.NET, the Type statement is not supported. You must declare structures using the Structure … End Structure construction. This implies no restriction at all, since the semantics of the Structure type are a superset of Type’s semantics.

Lightweight “Classes"

Structures are somewhat like lightweight classes. In fact their definition and usage is almost identical. Structures are value types and serve to provide a container for very lightweight, small groups of data that come along with some handling code.

Good examples for this are “points” representing coordinates in a graphics system. In such a system, “points” have to be managed and kept in great numbers. Keeping every single point as a reference type that needs to be individually tracked by the system for memory management and maintaining identity would dramatically reduce the system’s overall performance.

The role differences between classes and structures are therefore:

· Structures are lightweight data containers for small data items that appear in great numbers and for which identity does not need to be maintained.

· Classes are used for rich objects with their own identity (by reference) that need to be handled by consumers and containers.

· Structures cannot use inheritance. They can neither inherit from other structures or classes nor can they be inherited.

 Section 2: Language Features

[image: image18.png]B Exception Handling

= Exceptions are not necessariy errors
= Two styles: structuret (SEH) and unstructured (UEH)
= Only one sty alowed in s method

= UEH supportect for backward compatibiity
- Wicrosoft. visualasic. Informtion.Err

Exception Handling

Exceptions are not necessarily errors

Exception handling deals with unforeseen or foreseen conditions under which the main flow of control cannot be continued. These conditions might be that a file cannot be opened due to certain circumstances, a number cannot be computed because of an overflow error, or other run-time errors. It is not possible to check for all possible errors before starting an action: some checked conditions may not hold true while the action lasts.

Some of these conditions are not really errors: they can also be a planned or expected outcome of a certain function.

It is good practice to prepare for such conditions. Visual Basic.NET provides the programmer with two different styles to declare how to continue after the error condition occurs.

Two styles: structured (SEH) and unstructured (UEH)

Visual Basic.NET retains the old On Error style of exception handling and introduces a structured approach to the language. This structured exception handling is already known to people familiar with languages like C++ or Java.

Only one style allowed in a method

In a method only the structured or the unstructured approach is allowed.

UEH supported for backwards compatibility

As already stated, the On Error keyword is still supported. This method works a lot like a GoTo. The main issue is that this method is bound to the language and not the platform. An exception cannot be raised in a Visual Basic component and then handled by a calling component written in a different language; in fact the exception must be handled within the same procedure.

The Err object, containing the error information, is accessible as one of the compatibility classes.

Section 2: Language Features

[image: image19.png]B Structured Exception Handling

= Exceptions are system concepts
- Propagated between somponents

= Syntactical form of hancling:
™y
<csometiing risky
Catar s As Exdeption
recower from the exception:
Finally
eecute this regardless
End Try
- Can dafine custom exceptions

- Derived flom System Exseption

= Exceptians can be user-defined and thrown expictl
- Thraw

Structured Exception Handling

Exceptions are system concepts

With the structured approach, which is implemented by the .NET common language runtime, it is possible to catch an exception on an outer level of execution. It is even possible to have nested exceptions: if an error handler itself throws an exception, it can also be trapped and the reason for the original error can still be examined.

Syntactical form of handling

An exception handling is implemented using the Try…Catch…Finally block statement.

The runtime starts executing the Try block. When an exception is thrown, the runtime examines the call stack, a list of function calls created by the currently running program. This execution path can have several functions. For example, if Main() calls FirstMethod(), and that method calls SecondMethod(), and that method calls ThirdMethod(), all these are on the call stack.

The exception is passed up the call stack to each enclosing exception block. As the stack is unwound, each exception block is given the opportunity to handle the exception. If the exception can be resolved by one of the Catch statements, it executes the handling statement. If the exception does not match any of the Catch statements in the exception block, the stack is again unwound and the exception is presented to the next method. If the exception reaches all the way to the beginning of the program (for example, to Main()) and has not been handled, the runtime displays a dialog box declaring an unhandled exception has occurred.

Note that stack unwinding goes in only one direction. As the stack is unwound, objects are destroyed. Once the exception is handled, the program continues after the Try block of the Catch statement that handled the exception.

If the Try block has been executed without an exception being thrown, or a Catch block (an exception handler) has been executed, the Finally block corresponding to the just finished Try or Catch block is executed. This block normally cleans up after the algorithm.

Exceptions can be thrown explicitly

Exceptions usually occur when a system routine detects an error. But you can provide exceptions of your own by declaring a class that inherits from one of the predefined exception classes. And you can throw an exception manually at any time by using the keyword Throw.

Section 2: Language Features

[image: image20.png]B Delegates

= Objest-crerted function pointers
= Can pointto a specific metho of a specificinstance.

Deleames Fimction Cpranctx e Tnteer, 3 A5 Tokepe As Boclan
Pubtic Function Gmtx 0 Tk, 3 22 T Ao Koolean
T Gt ction ot 1 o >
51 surtGort as Gmpunc, et IaraaO A5 e
st TmckomreraaCD, W) Then
i
I 5t e Cppanc s 0 b 0w, A

Delegates

Object-oriented function pointers

Delegates are objects that serve the same purpose as function pointers in C++. Because they are type-safe, secure, managed objects, you get all of the advantages of pointers without any of their disadvantages. For example, delegates always point to a valid object and cannot corrupt memory of other objects. Besides their use as the equivalent of function pointers, delegates are also used for event handling and callbacks in the .NET Framework.

Can point to a specific method of a specific instance

Each instance of a delegate forwards calls to one of the following destinations: a static method, a shared method of a class, or a public method on a particular instance of an object. The object and method are defined with the AddressOf operator when the delegate instance is constructed. Therefore, the definition of a delegate is simply the signature of the method to which it forwards its calls. The implementations of the methods on a delegate are provided by the runtime, not by user code. Developers cannot specify additional members on a delegate.

The definition of delegates is accomplished by a special syntax. They are not defined like regular classes, derived from System.Delegate, but rather declared by using the keyword Delegate.

Section 2: Language Features

[image: image21.png]B Events

= Tradtional WithEvents stle il supported

Private withcwents we ac widget
PUBTiC Sub e s eover ...) Hondles we.ousaiower

= New event system based on .NET Framework
- Implemantad antop of delegates

= Muticast events

= Dynarmic hookup of method as hander
- AddHandier, RemaveHandisr

= Many events can be roued o same method

Events

Traditional WithEvents style still supported

Visual Basic has supported events for a long time, and the traditional ways of defining and using events can still be used. For an object to be able to use event handling, it is sufficient to declare it using the WithEvents clause. The event handler now is hooked up to the event using the new Handles clause. The name of the routine is not important, and you can hook up the routine to multiple events.

However, Visual Basic.NET includes several new ways of working with events that let you dynamically connect or disconnect events and event handlers.

Event system based on the .NET Framework

An event is an action to which you can respond, or "handle," in code. Events can be generated by a user action, such as clicking the mouse or pressing a key, by program code, or by the system.

Implemented on top of delegates

The .NET event model uses delegates to bind events to the methods used to handle them. The delegate allows other classes to register for event notification by specifying a handler method. When the event occurs, the delegate calls the bound method.

To declare an event you use the keyword Event. Once the event has been declared, use the RaiseEvent statement to fire the event. An event can't be declared to return a value.
Dynamic hookup of method as handler

Event handlers will require the Handles clause

Many events can be routed to same method

Delegates can be bound to a single method or to multiple methods, referred to as multicasting. When creating a delegate for an event, you (or the Windows Forms Designer) typically create a multicast event. A rare exception might be an event that results in a specific procedure (such as displaying a dialog box) that would not logically repeat multiple times per event.

Section 2: Language Features

[image: image22.png]B Simpler, More Consistent

= Boolean operstors.
~ nd, O Yor, and Not are sl biwise
- AndAizo and Orlse added forshorksicuiting
=More obvious declrations

- Visual Basic S: pim 4, a5 Tmteger
s Variant. | i nteger

- Visual Basic.NET: bim 1,5 a5 Integer
Tand) are nteger

= Variables declared n a block have block scope
=No implick object creation—must use Hew

Simpler, More Consistent

Bitwise operators

In Visual Basic.NET, And, Or, Xor, and Not are still bitwise operators. This is for backwards compatibility.

The operators AndAlso and OrElse are added for short-circuiting, i.e. the evaluation of the whole expression stops when the outcome is already determined: An And-expression cannot evaluate to True, when a single part evaluates to False, and Or-expression canot evaluate to False, when a single part evaluates to True.

More obvious declarations

In Visual Basic.NET 7.0, you can declare multiple variables of the same data type without having to repeat the type keyword. The declarations equivalents to those in the preceding example are as follows:

· Visual Basic 6: Dim i,j as Integer
i is Variant, j is Integer
· Visual Basic.NET: Dim i,j as Integer
i and j are Integer
Variables declared in a block have block scope

A variable declared inside a block has block scope, and it is not accessible outside the block.

However, the lifetime of a variable is still that of the entire procedure. This is true whether the variable has block scope or procedure scope. If you declare a variable inside a block, and if you enter that block several times during the lifetime of the procedure, you should initialize the variable to avoid unexpected values.

No implicit object creation—must use New

There is no implicit object creation. If an object variable contains Nothing when it is encountered, it is left unchanged and no instance is automatically created.

You can create an object with the same statement that declares the object variable.

Dim Emp As New EmpObj

Section 2: Language Features

[image: image23.png]B [ore Robust

= Stricttype checking

- Implat and explict type sonversions.
Bl Dertved 3 Gerived = new Derived O
Base = berived

- Option stict

- Option Explicit

= Optional parameters must have defaut values

- sub calcutate(optional Byval
param As Boolean = False)

More Robust

Strict type checking

The process of changing a value from one type to another type is called conversion.

A conversion from a value type stores a copy of the source value in the destination of the conversion. However, this copy is not an exact image of the source value. The representation is changed, and even the value being represented might change.

Narrowing conversions change the destination copy of the source value with potential information loss. For example, a fractional value is rounded when converted to an integral type, and a numeric type being converted to Boolean is reduced to either True or False. Widening conversions preserve the value but can change its representation. This happens if you convert from an integral type to Decimal, or from Char to String.

The original source value is not changed as a result of a conversion.

A conversion from a reference type copies only the pointer to the value. The value itself is neither copied nor changed in any way. The only thing that can change is the data type of the variable holding the pointer.

In the example, the data type is converted from the derived class to its base class, but the object now pointed to by both variables is unchanged by the conversion.

Conversions can either be implicit or explicit. Implicit conversions may be done without any special syntax. Explicit conversions, on the other hand, must be done using the cast operators.

The set of implicit conversions depends on the compilation environment and the Option Strict statement. If strict semantics are being used, only widening conversions may be done implicitly. If permissive semantics are being used, conversions between strings and dates, strings and boolean, and strings and numeric types will be allowed. If the conversion cannot be made because of incompatible types or expressions, an InvalidCastException is thrown. Note that there are some string and character conversions that must always be done explicitly.

Initializers

Data member declarations may include variable initializers. For shared data members, variable initializers correspond to assignment statements that are executed after the program begins executing but before the shared data member is first referenced. For instance data members, variable initializers correspond to assignment statements that are executed when an instance of the class is created.

There are four forms of variable initializers: regular initializers, array element initializers, array size initializers and object initializers. The first two forms appear after an equal sign that follows the type name; the latter two are part of the declaration itself. Only one form of initializer may be used on any particular declaration.

Optional parameters must have default values

Every optional parameter must declare a default value, which is passed to the procedure if the calling program does not supply that parameter. The IsMissing function is not needed to detect a missing parameter, and it is not supported.

Section 2: Language Features

[image: image24.png]B Better Performance

= Supports free threading
« More rasponsiveness

= Short.cireut evalustion

= A mdN1so & AndaTso € orETse 0)

=Reference assignment for arays.

Better Performance

Supports free threading

Visual Basic.NET allows you to write applications that can perform multiple tasks independently. Tasks that have the potential of holding up other tasks can execute on separate threads, a process known as free threading or multithreading. Free threading allows you to write applications that are more responsive to user input because processor-intensive tasks can run on separate threads and the user interface will remain active while these tasks execute. Free threading is also useful when creating scalable applications because threads can be added as the workload increases.

We will have a closer look at free threading later on.

Short circuit evaluation

The operands of logical AndAlso and logical OrElse expressions are evaluated from left to right. If the value of the first operand is sufficient to determine the result of the operation, the second operand is not evaluated. This is called “short-circuit evaluation.”

In the sample, evaluation terminates, when A is false. Using the regular operators the whole expression would have been evaluated.

Reference assignment for arrays

When an array is assigned to the other, a reference to the right array is assign to the left array. That means that after such an assignment both variables are references to the very same array. Changes to the array through one variable are reflected in the other.

To accomplish copying the values of the array the methods Clone(), Copy() or CopyTo() must be used.

Section 2: Language Features

[image: image25.png]B Some Other Changes

= Parentheses sround nonemply perameer lists
- Always required forfunction and procadurs calls

= Defaut parameter passing metho is now ByVal

= Praperties as reference parameters
- Changes are now reflected back

= GosubReturn no langer supported
= Defaut datatypes no longer supported
= Arithmetic operator shoreuts: x 4= 7
=Lete binding

Some Other Changes

Parentheses around nonempty parameter lists

Parentheses are always required around a nonempty parameter list in any procedure call. In Sub calls, the Call statement is optional:

Y = Sqrt(X)

DisplayCell(2, 14, Value)

If you are calling a procedure without supplying any parameters, you can include empty parentheses or leave them out altogether.

Default parameter passing method is now ByVal

In Visual Basic.NET, the passing mechanism defaults to ByVal for every parameter when you declare a procedure. This protects parameters against modification.

Properties as reference parameters

A property parameter passed ByRef is copied both into and out of the procedure. This is in contrast to the behavior of Visual Basic 6, where such parameters where treated like ByVal.

Gosub/Return no longer supported

Subprocedures called by Gosub are no longer supported, since they are not considered structured. Regular Subs should be used instead.

Default data types no longer supported

The default data type statements (DefInt, DefStr, and so on) are no longer supported. This was done to improve clarity of declarations.

Arithmetic operator shortcuts

Visual Basic.NET now supports a shortcut syntax for assignment of simple operator expressions that resembles the C-style notation: x += 7 is an alternate notation for x = x + 7. The following shortcuts are supported:

+= :
Addition

-= :
Subtraction

*= :
Multiplication

/= :
Division

\= :
Integer division

^= :
Exponentiation

&= :
String concatenation

Late binding

In Visual Basic 6.0, you can assign an interface reference to a variable of type Object, enabling late-bound access to the interface's methods and properties. This behavior is limited to in-process calls on the same thread. Visual Basic.NET allows late binding only to public members of a class, and not to interface members.

Section 2: Language Features

[image: image26.png]B Deterministic Finalization

= object usedta be destroyed automatically
- Just atthe moment s no onger needed
=N longer available with Visual Basic. NET:
- No autamatic referanos courting betind the soenis
- Dbjects are destioyed at garbage oollectofs choios
- Rasouroes may stay losked vitually forever
=0ne possble soltion
- Provida your wn reference couring and disposal scheme

= Make your objects stateless

Deterministic Finalization

An object used to be destroyed automatically

In older versions of Visual Basic, objects were destroyed as soon as the last reference to this very object was released, and all references held to other objects were released, too. Setting the last reference to Nothing or simply falling out of scope immediately triggered the destruction of the object and released all of its resources.

No longer available with Visual Basic.NET

This whole scheme is unavailable in Visual Basic.NET. Since the memory management is done by the .NET Framework, which makes use of a garbage collector, freeing up resources is done when the runtime chooses to do so, and that is basically when there is nothing else to do or no more resources are left. (How the garbage collector actually works is discussed in the scope of the .NET Framework.)

By no means can the developer rely on the runtime freeing up a resource as soon as the reference is cut. A form that holds a database connection being terminated does not guarantee that the database connection is released immediately.

Some existing programs rely on deterministic finalization. These programs will encounter run-time problems.

One possible solution

A possible solution is to add a reference counting scheme of your own and call a cleaning method after you do not need the object or its services any longer. While this is a viable solution, this approach adds a lot of complexity to your code.

Make your objects stateless

A better solution is to avoid objects keeping a state. That also means avoiding global objects that, for example, keep a database connection alive for the lifetime of the program. In such a scenario it is better to open the connection when needed, close it immediately after use, and rely on the caching of connections that is done by the runtime.

Section 3: Integration into .NET

[image: image27.png]B Section 3: Integration into .NET

= Common Language Runtime
= Concepts of Namespaces, Assermblis, Modules
=Fres Threading

=Reflction

= attrioutes

Windows Forms

=Tools

Integration into .NET

Common Language Runtime

The .NET Framework common language runtime is a run-time environment that manages the execution of code and provides a set of services that makes development easier. The so-called managed code benefits from features such as cross-language integration, cross-language exception handling, enhanced security, versioning and deployment support, a simplified model for component interaction, and debugging and profiling services.

Concepts of Namespaces, Assemblies, Modules

We will give a brief description of these core concepts of structuring and deployment. All of these concepts are common to all .NET languages.

Free Threading

Unlike COM, .NET does not use apartments to synchronize access to managed resources. Managed objects themselves are responsible for ensuring that all shared resources are used in a thread-safe manner. The runtime provides several mechanisms for protecting access to shared resources: synchronized regions, synchronization primitives such as mutexes, locks, and completion ports, and synchronized contexts.

Reflection

We will give a short description of the purpose of this technology.

Attributes

Attributes enable you to specify information about entities defined in a Visual Basic.NET program. Attributes can apply to entire assemblies, modules, or smaller program elements such as classes or properties.

Windows Forms

This new library delivers a consistent model for developing user interfaces for all .NET languages.

Tools

We will introduce you to the most important tools that you will use when working with Visual Basic.NET: The compiler, Visual Studio.NET and the Upgrading Wizard.

Section 3: Integration into .NET

[image: image28.png]@ The Common Language Runtime

= Access to NET platform services
= Crass-language interoperation
- Thatindudss inhertance
= nteroperation w/ COM an Platform nvosation Servicss
- COMInterop
- Pinvoke
- Calling unmanaged sode has s implicatons

The Common Language Runtime

Access to .NET platform

.NET also provides a common base class library organized into a single hierarchical tree of namespaces. At the root is the System namespace, which contains objects, including predefined types such as classes and interfaces, that can be used from any supported language. System objects are used by all applications. The base class library also includes namespaces for both abstract base classes and derived class implementations for many other useful classes, including those for file IO, messaging, networking, and security. You can use these classes "as is" or derive your own classes from them.

Cross-language interoperability

Interoperability between programs written in different languages was one of the most important design goals of .NET. COM already did a good job of integrating components written in different languages, but there are limitations coming from incompatible types and not generally supported concepts like function pointers. .NET takes that integration a large step further.

For example, you can define a class, then, using a different language, derive a class from your original class or call a method on it. You can also pass an instance of a class to a method on a class written in a different language. This cross-language integration is possible because language compilers and tools that target the runtime use a common type system defined by the runtime, and they follow the runtime's rules for defining new types, as well as creating, using, persisting, and binding to types.

Interoperation with COM and Platform Invocation Services

Since it can not be expected that all COM components will be ported to .NET within a reasonable time—if they will be ported at all—the .NET Framework provides means to interact with COM that include both calling COM services from .NET and vice versa.

Furthermore, there are classes in the Framework that allow using services that are implemented in common DLLs. That may be Windows system DLLs or DLLs written in any arbitrary development environment.

Calling COM services or regular DLLs from managed code has its own issues: custom marshalling may be needed, the .NET code-based security system cannot be applied, and so on. The programmer has to deal with these issues.

Section 3: Integration into .NET

[image: image29.png]B Namespaces

= Organizational concept
= May and should be nested
- System Reflection

- MyLib Helpers. Controls Inputs
= Muliple namespaces declare in program
= Namespaces can span mutiple programs
= Importing namespaces
- Allows unqualied 360255 o types
- Placed at e or projectlevel
= Globalnamespace without a name.
- Globaly dedared mambers have program zeape.

Namespaces

Organizational concept

Namespaces organize objects: they prevent ambiguity and simplify references when using large groups of objects such as class libraries.

Names defined within the scope of a certain namespace are referenced from outside that namespace by qualifying their name with the name of the namespace.

Namespaces can be nested within other namespaces.

Multiple namespaces declared in a program

It is possible to declare as many namespaces within a single piece of code as is necessary. But usually there will be only one, because multiple namespaces should be kept in their own group of files for maintenance reasons.

Namespaces can span multiple programs

Namespaces can be defined using several files. No special provision has to be made when declaring the namespace. The runtime will take care of it.

Importing namespaces

When importing a namespace with the Import directive, names declared within that namespace can be referenced without qualification. All import directives must appear after any option directives but before any type declarations.

Global namespace without a name

There is a global namespace that has no name and whose nested namespaces and types can always be accessed without qualification. The scope of a namespace member declared in the global namespace is the entire program text. The names of the topmost namespaces, for example System, are defined in the global namespace.

Section 3: Integration into .NET

[image: image30.png]B Assemblies

=Resut of complling is sl a dl o _exe fie
- Singlefle of multple-fle assembly
=File cortains metadata (manifest)
- Dasaription of the assembly isel
- Dasaription of mplemerted types
- Extemat references
“Version informaton
« Enfores seourity
- And more

Assemblies

Result of compiling is still a .dll or .exe file

The result of compiling a source file or a whole project is a .dll or an .exe file, but these files do not contain native machine code. They contain code in Microsoft Intermediate Language (MSIL). This code is compiled to machine language at run time. The design of MSIL makes this a very fast process.

The result of compiling is called an assembly. An assembly can consist of a single file or multiple files. From a consumer’s perspective there is no difference. An assembly is a logical construct; any physical files that make up an assembly with multiple files are not physically linked by the file system. Rather, they are linked via the assembly manifest, and the runtime manages them as a unit.

File contains metadata

In every assembly is a collection of additional data that describes the elements and how the elements relate. This metadata is contained in an “assembly manifest”.

This manifest describes the following:

· The assembly itself (name, files of assembly, version, and so on).

· A content description of which types are defined in the assembly.

· An assembly reference, which is a listing of all external dependencies—DLLs or other files your application needs but that you did not create. Assembly references contain references to both global and private objects. Global objects reside in the global assembly cache, an area available to other applications, somewhat like the System32 directory. Private objects must be in a directory either at the same level as or below the directory in which your application is installed.

· Version information—consists of a major and minor version number, and a revision and build number. These numbers are used by the runtime when enforcing version policy based on configuration files.

· When an assembly is built, the developer can specify a minimum set of permissions that the assembly requires to run. Additional permissions can be granted by security policy set on the machine on which the assembly will run. For example, if the developer writes code that accesses the disk, the assembly should request “File IO Permission”; otherwise—depending on the security policy—no file I/O is allowed.

· There is more information, like hashes of all related files for ensuring that files of an application have not been tampered with, and more.

Section 3: Integration into .NET

[image: image31.png]B Modules

= Smallest unt that can be compied

= Contains one or more classes or nterfaces
b win) usually has module sope

=Mare than one madule can share an assembly
“whieh I an multle assembly then

Example; Tmports System
PubTic Mode Kaind
Sib Wi O
Consote.writeLineCHello wrid:™)
End Sub
End odite

Modules

Smallest unit that can be compiled

A module is the unit that makes up a callable program. In Visual Basic.NET a module definition is encapsulated in a Module...End Module compound statement.

Contains one or more classes or interfaces

The scope of a module is somewhat like global scope in a program. At this level, class definitions are given and the program's entry point (usually the Sub Main()) is defined.

More than one module can share an assembly

More than one module can be deployed in an assembly, which is a multifile assembly in this case. Each module is deployed in a file of its own.

Section 3: Integration into .NET

[image: image32.png]B Free Threading

=Run muiple tasks indepencertly
- Object can b shared by threads

= Use AddressOf operstor on Subto declare
i mread A5 ew Threading. tr cad (ressOF Hysub)
mthread.start0

mfthread.0in0

= Sub cannot have arguments o return value,

= Synchvonization nesdedt

Free Threading

Run multiple tasks independently

As already stated, .NET does not use COM’s apartment threading model. That means that several threads can share objects—they do not get their own copy of the global data set.

That implies that the programmer has to deal with synchronization. When shared resources are modified, they must be locked to prevent data from being corrupted and unlocked afterwards.

This disadvantage of more complex managing is compensated by a gain in performance and savings in terms of system resources.

Use AddressOf operator on Sub to declare

A thread is declared on the basis of a subroutine. In this context the AddressOf operator is used. This C++-style operator can also be useful when calling Windows API functions requiring a function pointer as parameter. In fact, this construct is based on delegates, too.

Sub cannot have arguments or return value

The Sub that is called as the starting point of the thread cannot have parameters. To parameterize the thread, there are some possibilities in conjunction with reflection.

Synchronization needed

Since the threads run independently against the same objects, there is some synchronization effort. The .NET Framework provides the Monitor class for implementing exclusive locks and established a secure mechanism for accessing these shared objects in a controlled manner.

Section 3: Integration into .NET

[image: image33.png]B Threading Sample

i writer 45 Thread = new Thread (Wiressof b Threadsib)
i Reader 4 Thread = new Thread (\ressof b Threadsub)

witer.start0
Beader.star 0
writer.0in 0
Boader 0in O

PubTic sub Treadsub
bomitor.enter 0e) “Enter sychromization block

soritor.exit0e)
End b

Threading Sample

The sample shows the declaration of two thread objects, a reader and a writer thread. Suppose these two threads share a data structure, say a list, that the writer thread writes to and the reader thread reads from.

The threads are started with the Start method. The Join method allows for waiting until both threads are finished with their work.

The actual writing and reading must be synchronized so that no writing occurs during the attempt of the other thread to read. This is done by calling Monitor.Enter(). Between the Monitor.Enter() and Monitor.Exit() calls the reading and writing may be done.

The monitor object provides a rich functionality concerning synchronization between the caller and the threads and between the threads themselves.

Section 3: Integration into .NET

[image: image34.png]B Reflection

= Mechanism for obtaining run-time nformation

- hssamblies

- Types:classes, intertaces, methods
=Provides explict lats-bound method invocation
=May even construct types ot run time:

- Systen.eflection.omit

Reflection

Mechanism for obtaining run-time information

Reflection is a whole API for examining the elements of an application from the application itself. Any element, that is, an assembly, module, class, or thread, can be the target of a reflection call.

In the System.Reflection namespace there are classes for all these elements. Each of these classes provides a set of methods to explore the whole application domain.

The App object in Visual Basic 6 was something similar.

Provides explicit late-bound method invocation

Reflection allows for an explicit late-bound method invocation mechanism. This mechanism looks very similar to the good old IDispatch.Invoke: actually the method is called Invoke.

Given an object, you can reflect on the type of this object via GetType(), examine whether this type supports a method (via GetMethod()), and call the method Invoke on this type with the method name as parameter.

May even construct types at run time

.NET delivers an additional API:

Reflection.Emit: It is to some extent the counterpart to the reflection API in that it allows not for examining types, but rather for constructing types at run time. These types can actually be the same as with reflection: classes (with members and methods), threads, modules, or assemblies.

Section 3: Integration into .NET

[image: image35.png]B Attributes
= Addtional declarative information on program tem
= May define custom attibute classes

PubTic Class persorFirstiame
Inherita Aterfhute
End Class
= Canbe retrieved t runtime
=Enhance program functionaity
- Giving ink o the system runtime
<Welmethod 0> PubTic Function Kello A5 String -..
- Use 3z meta slements
<Personeirstiame)> Din wormme As string
Persoreirsteme > Din Kamepan As String

Attributes

Additional declarative information on program item

Attributes enable you to specify information about entities defined in a Visual Basic.NET program. Attributes can apply to entire assemblies, modules, or smaller program elements such as classes or properties. These attributes are a declarative way to categorize program elements.

May define custom attribute classes

The .NET Framework predefines some attribute types and uses them to control run-time behavior. But the developer can define custom attributes for any entity having any type, for example, String or Integer.

To accomplish this task, the developer has to derive a class from the System.Attribute class or a more specialized class. In its most simple form, an attribute can be present or not, but attributes can have members like regular classes, even methods.

Can be retrieved at run time through reflection

It is through reflection that the programmer can examine a type or a program entity to determine whether a certain attribute exists and how it is parameterized. Methods can also be invoked via reflection.

Enhance program functionality

Attributes can be used to give hints to the system runtime by using standard attributes. In the example, the attribute WebMethod is a signal to the design tool that this is a method callable in a distributed environment. The sample shows how different members can be grouped together.

Section 3: Integration into .NET

[image: image36.png]B \Vindows® Forms

= New forms library based on NET Framework
= Can be used for deskiop applications

= Looal user interface for three-fir applications

Windows Forms

New forms library based on .NET Framework

Because applications can now be written in a mixed language environment, it became necessary to provide a common library for the user interface instead of keeping the language-specific classes. So the .NET Framework provides such a library.

Can be used for desktop applications

The System.WinForms namespace contains classes for creating Windows-based applications that take full advantage of the rich user interface features available in the Microsoft Windows operating system. In this namespace you will find the Form class and many other controls that can be added to forms to create user interfaces.

Local user interface for three-tier applications

A new feature of this library is the support for three-tier applications. Applications can be easily distributed to client, logic, and data layers.

Section 3: Integration into .NET

[image: image37.png]B Command-Line Compiler

= Compiles Visusl Basic source into MSL

e feargetiexe foutzmprogram.exe

= Can have a multtuce of options
= Can be called from arbirary environment
= Uses fewer system resources than Visual Studio
= Canbe used wih make

- Useful for mult-anguage projects

Command-Line Compiler

Compiles Visual Basic source into MSIL

As an alternative to compiling Visual Basic.NET programs from within Visual Studio.NET, you can use the Visual Basic.NET compiler from the command line to produce executable (.exe) files or dynamic-link libraries (DLLs).

Can have a multitude of options

The Visual Basic.NET command-line compiler supports a complete set of compiler options that control input files, output files, assemblies, and debug, and preprocessor options.

Can be called from arbitrary environment

If for some reason you want to use a different development environment than Visual Studio.NET or want to build systems in a batch build, the command-line version is the tool to use.

Uses fewer system resources than Visual Studio

If your development machine has only limited resources, the command-line version in conjunction with a small editing environment and the several SDK tools like the debugger or the disassembler can be the only viable choice.

Can be used with Nmake

If your project comprises not only.NET modules but also regular windows DLLs or resource files built with third-party tools, you might consider using batch processing with Nmake.

Section 3: Integration into .NET

[image: image38.png]B Visual Studio.NET

= BuiRt aroundithe .NET Framework SDK
= Improved integyation an functionalty
« Multple-angusge projects
- Oine inegratad DE for al languages and tasks
- Integrated tots: Visusl Modelr, database managemant
- Perfect help ntegraton: Dynarmio Help, InaliSense®
= Highest productiviy for al
- Rapid applcation development
- Large-scale projects

Visual Studio .NET

Built around the .NET Framework SDK

The next generation of Microsoft Visual Studio® is the integrated development environment for the .NET Framework SDK and, of course, also the evolutionary environment for building COM-based applications.

Improved integration and functionality

Visual Studio builds on the original idea to provide the most productive development environment. It also finally realizes the vision of having all Microsoft languages sharing a single and consistent development environment with shared tools for database creation and object modeling.

Using the .NET Framework common language runtime you can have projects with multiple languages, choosing the right language for each particular task.

To get you up to speed in the new world of the .NET Framework, Visual Studio.NET includes Dynamic Help, which anticipates questions you may want to ask as you are writing your code, and IntelliSense® code completion, which helps you produce code more quickly.

Highest productivity for all

With a balance between support for rapid application development and being an excellent solution for co-developing large projects, Visual Studio.NET provides the highest productivity for every developer.

Section 3: Integration into .NET

[image: image39.png]B From Visual Basic 6 to Visual BasicNET

= Visual Basic.NET is a true successar of Visusl Basic 6
- butsome things make 3 difference
= Campaitity classes help wih the ranstion
- Microsoft Visusl Basic imported by defaut
- Classes that defver the functonality of.
+Colktions
JEiSs—
ahire

=Prepare for porting!

From Visual Basic 6 to Visual Basic.NET

Visual Basic.NET is a true successor of Visual Basic 6

Visual Basic.NET represents a major departure from previous versions of Visual Basic in several ways. With a new development environment, an updated programming language, and a new forms package, even the most experienced Visual Basic developers may find themselves in unfamiliar territory. There is a lot to learn, and some old habits that need to be broken.

On the other hand, much of what made Visual Basic distinctive has been retained and improved to make development easier than ever before.

Compatibility classes help with the transition

Most of the old, familiar functions are still available in Visual Basic.NET. The Visual Basic 6.0 compatibility library is provided primarily to ease the migration of Visual Basic 6.0 applications, but it can also be used by any Visual Basic.NET application. The functions included in the library allow you to continue to apply your existing knowledge of Visual Basic while getting up to speed on the changes to the Visual Basic language.

The namespace Microsoft.VisualBasic is imported into your project by default.
Section 3: Integration into .NET

[image: image40.png]B Visual Basic Upgrade Wizard

= apples changes automatically
= Generates soltion
“Type comversions
it Gt
[y ——
et shurtre
<CumsneytoDedmal
~Zerorbound anays
 NET Windous Forms replace Visual Basio® Forms

=Recommendations for uporading

Visual Basic Upgrade Wizard

Applies changes automatically

When opening Visual Basic 6 with Visual Studio.NET, the Upgrade Wizard is started. This tool applies changes to the project and the source code and stores the resulting files in a new directory. The original files are left untouched.

Generates solution

The wizard generates the solution file and applies the most straightforward changes: types are converted (where there are direct counterparts), array indexes are adjusted, and Visual Basic 6 forms are substituted with corresponding classes of the .NET Windows Forms library.

Recommendations for upgrading

Some upgrading cannot be done by the wizard, but at least the tool identifies areas of possible upgrading issues and inserts a comment describing what needs to be dealt with.

This tool is far from being the complete upgrading solution. Do not expect your program to run without manual adjustments. But it serves as a good starting point.

Section 4: Putting It All Together

[image: image41.png]B Section 4: Putting It All Together

= Sample Walkivough
- Exploring Visual Basio NET Features n Duwamish Books

Putting It All Together

Sample Walkthrough

In this walkthrough we will examine most of the new features of Visual Basic.NET and get a first impression of Visual Studio.NET.

Section 4: Putting It All together

[image: image42.png]B Demo: Duwamish Books

=Enterprise Sample appication

st practice” mutiple-tier desion
= Included with Visual Studio NET
= Great startto learn shout

- Visual BasieNET

- ASP.NET

- ADOLNET

Demo: Duwamish Books

Enterprise Sample application

Duwamish Books is an Enterprise Sample application built by the MSDN® Architectural Samples team.

"Best practice" multiple-tier design

It employs a “best practice” multiple-tier design that has also been the basis for the Enterprise Templates shipping with Visual Studio.NET

Included with Visual Studio.NET

The sample is included with Visual Studio.NET as a C# and a Visual Basic.NET application.

Great start to learn about Visual Basic.NET, ASP.NET, ADO.NET
With Duwamish you can see ASP.NET, ADO.NET, and the programming languages applied in a real application and see how they are intended to be put to use.

Summary

[image: image43.png]B Summary

= Major touchup to take advantage of the NET Framework
= Modernized and consistent language

= Legacy features fially dropped

= Vaur Visual Basic.NET cade can be reused

= Supported migration path

Summary

The new edition of the Visual Basic development system has significant improvements. New concepts like full object orientation, structured exception handling, delegates, and events may demand a steep learning curve, but the benefits are worth the effort.

BASIC has come of age. Many remainders from the very beginning of BASIC have been taken out of the language. Using the new Visual Basic.NET language, your components and their code can easily be reused even from different languages. The new Windows Forms library that replaces the old Visual Basic forms is one of the necessities to accomplish this.

The Upgrade Wizard and numerous documented procedures for migrating from Visual Basic 6 to Visual Basic.NET help you with the step forward.

After the change, Visual Basic.NET is more of an all-purpose tool than ever before.

Appendix—Exploring and Extending DuwamishOnline VB

[image: image44.png]Duwamish Books
——

& Sample Application for Mcrosoft NET

Duwamish Online

The Duwamish Online store is one of the Enterprise Samples delivered with the Visual Studio.NET product. Duwamish implements a fictitious e-commerce bookstore complete with catalogue, personal profile management, and order handling.

The Duwamish Sample is shipping in both a C# and a Visual Basic.NET version. Before we start the walkthrough for the technologies that have been presented in this module, you will first learn how to install the Duwamish sample and how the sample is organized.

Appendix—Exploring and Extending DuwamishOnline VB

[image: image45.png]B Installing the Sample 12

= nstall the "Enterprise Samples” wih Visusl Studio.NET
= Locafion of the Visusl Basic Version

- Directory AEnterpiseS amplesiDumamishniine VB
= nstallation Tasks

~ Chedkthe prarequisites
Mg indows 2000 S M 0L Sarvr™ 2000 uth
Engien sy opsona d ppored
+Readite Readnem

- Run nstaler Duwamish.msi (doubl-olick 1)

Installing the Sample (1/2)

Install the “Enterprise Samples” with Visual Studio.NET

When you install Visual Studio.NET, make sure to include the “Enterprise Samples” into your installation. By default, they will be installed. If you did not install them, run setup again and add them.

Location of the Visual Basic Version

The Visual Basic.NET version resides in the “.\EnterpriseSamples\DuwamishOnline VB” directory.

Installation Tasks

Before you install the sample, you should check the following prerequisites:

You should install the sample on Microsoft Windows 2000 Server with Microsoft SQL Server™ 2000 preinstalled. Duwamish Online uses the “English Query” feature of SQL Server, so you should make sure that this feature is installed for SQL Server 2000.

For more detailed instructions you should read the Readme.htm file before proceeding.

Once you are sure that your system has all of the required components, run the Duwamish.msi installer package by double-clicking it from the Microsoft Windows Explorer.

Appendix—Exploring and Extending DuwamishOnline VB

[image: image46.png]B Installing the Sample 22

= The instllstion wizarc wil guide you
= Defaults should be OK for almost everybocly.
= Setup wil instal database, Web sie, an code

= Ater nstalation s complete
- File/Dpen Solution withthe Duwarmish sin fle
- Can buld e sample with Buld/Euild Solution

Installing the Sample (2/2)

The installation wizard will guide you

The installation package will start the installation wizard that will take you through all necessary steps.

Defaults should be OK for almost everybody

Unless you want to install both the C# and Visual Basic versions side-by-side, the default values should be OK.

You may want to pay special attention to the database account (which must have administrative rights) and its password.

If you want to install both demos, you should install the first with the default values and choose different settings and directory names for the second one, so that they will not produce conflicts. The exact procedure and options will be obvious once you have installed the first version.

Setup will install database, Web site, and code

Once you have confirmed all settings, the installer will proceed to install the database, the Web site, and all related projects and code.

After installation is complete

After the installation is complete, you will find a Duwamish.sln file, which you can open with Visual Studio.NET using Open Solution on the File menu.

To run an initial build of the sample code, click Build Solution on the Build menu.

Appendix—Exploring and Extending DuwamishOnline VB

[image: image47.png]B Duwamish Architecture Overview

ot
e

ADDNET

[

Duwamish Architecture Overview

The architecture of Duwamish is mostly equivalent to what the enterprise templates of Visual Studio.NET will generate for you as a skeleton.

All access to the database is essentially encapsulated in the DataAccess module, which is being used by the BusinessRules and BusinessFacade to retrieve and store data.

Data is communicated throughout the layers using objects that are being provided by the Common module, while the SystemFramework supplies auxiliary functionality for diagnostics and other technical tasks.

The Web module implements the user interface for the application, accessing all functionality through the BusinessFacade.

Appendix—Exploring and Extending DuwamishOnline VB

[image: image48.png]EE Common Components

=Duwanish7.Comman
- Contains systems cenfiguraton apfons
- Contains sommon data definfons (casses)
<sutnamespane Dunanih Cammen 03

Internal data representationfor Book, Category,
Customer, Drde Data

= Duwanish SystemFramewark
- Diagnostcs utfes
- Pre and post conditon shecking classes
- Dynamic sonfiguration
- Inshart
+ Baypingtha's pu tesh vt busiess code

Common Components

Duwamish7.Common

The Common namespace (and subproject) contains all configuration options that are common to all parts of the system.

Also common to the entire system are the definitions for the catalogue (Books, Categories) and the order system (Customer, Order Data) and consequently they are also located in this shared project that is being used by all layers.

While the data is held in ADO.NET DataSets, this should not be confused with being the actual database layer. The Common namespace provides its own, internal relational view of the Duwamish data that’s being mapped to a physical data store by the DataAccess layer (next slide).

Duwamish7.SystemFramework

The SystemFramework contains all utility classes that are implemented to serve a specific technical purpose but are not immediately related to the business code. All of the code in this project is generally useful and applies to projects beyond the scope of Duwamish.

It contains diagnostic utility classes, pre and post condition checking, and dynamic configuration tools.

Appendix—Exploring and Extending DuwamishOnline VB

[image: image49.png]B Duwamish7.DataAccess

= Contains al datehase-releted code.
=Uses ADONET architecture

- Using SOL Server mansged provider

- Shows DstaSet, DatsSet Com mand usage

= Optimize for performance by using stared procs

Duwamish7.DataAccess

Contains all database-related code

The DataAccess namespace contains all database-related code in Duwamish, providing a central point for maintenance if the underlying data model needs to be optimized or extended.

The DataAccess module maps the common definitions for the internal data representation that are defined in the Common.Data namespace to the physical layout of the underlying database.

Uses ADO.NET architecture

The project builds on the ADO.NET infrastructure and uses the SQL Server managed provider to access the data store.

To retrieve and manipulate data, DataAccess uses DataSetCommands bound to the DataSets provided by the Common.Data subsystem.

Optimized for performance using stored procs

To optimize performance, the sample uses only a minimal set of “ad hoc” SQL commands and relies heavily on stored procedures, which are substantially faster.

Appendix—Exploring and Extending DuwamishOnline VB

[image: image50.png]B Duwamish7.BusinessRules

=Implemerts all business rues

“Validaton of business objects for e,
Customer EMal)

- Updating business objects
- Caloulatins (Shipping Cost, Taxes)
= 8l data access performed thiough Datascosss

Duwamish7.BusinessRules

Implements all business rules

The BusinessRules layer serves to implement all logic that is mandated by the system requirements. It validates data, implements calculations, and performs the manipulation of data.

All data access performed through DataAccess

All modifications that are being made to the underlying data store are performed through the DataAccess layer.

Appendix—Exploring and Extending DuwamishOnline VB

[image: image51.png]B Duwamish7 BusinessFacade

= Implements logical business subsystems.
- Customersystem: Profle management
- DrderSystem: Order management
- ProductSystem: Catalog management

=Reats data through Datascoess

= Data validated and updatedt using BusinessRules

= BusinessFacad encapsulates al business-relatect
functionalty

Duwamish7.BusinessFacade

Implements logical business subsystems

The BusinessFacade sits on top of the BusinessRules and provides a logical subsystem view. The BusinessFacade provides consistent, separate interfaces to the customer system, the order system, and the product system.

While data is read through the DataAccess layer, all manipulation is validated and performed through the BusinessRules.

Appendix—Exploring and Extending DuwamishOnline VB

[image: image52.png]B Duwamish7.Web

= Implements the user interface for Web access
=Uses ASP NET architecture

- Employs Web Forms model

- Uses code bahind forms

“ Manages sate

- Uses custom Wab cantrols

= Al functionlity accessed through BusinessF acade

Duwamish7.Web

Implements the user interface for Web access

The Web namespace implements the full user interface for the application.

Uses ASP.NET architecture

The UI is built on top of ASP.NET using Web Forms, custom Web controls, validation, “code behind forms,” and many more ASP.NET innovations.

All functionality accessed through BusinessFacade

Of course, all of the data displayed to the user and all interactions run through the BusinessFacade. This layered model enables reusing the entire back end for a shop with a radically different look and behavior or to expose parts of the application as a Web Service or a Windows Forms application.

Appendix—Exploring and Extending DuwamishOnline VB

[image: image53.png]B Shop at Duwamish OnlineNET

=Dema: Duwamishin Actian

Shop at Duwamish Online.NET

Demo: Duwamish in Action

Appendix—Exploring and Extending DuwamishOnline VB

[image: image54.png]B Exploring Duwamish VB

= Exploring Visual Basic. NET Features in Duwarish

Exploring Visual Basic.NET Features in Duwamish Online

To familiarize ourselves with the Duwamish sample code and to see Visual Basic.NET in action, we’re first going to take a brief tour through the various building blocks.

At this point it is assumed that you could successfully install the Duwamish sample for Visual Basic.NET and that you are able to open the solution file “Duwamish.sln” using File/Open Solution in Visual Studio.NET.

To make navigation a bit easier and to allow us to more easily find what we want to show you, we’re first going to identify the two key tools in Visual Studio.NET that are used in this walkthrough.

On the upper right side of your Visual Studio.NET window you should see a number of tabbed, overlapped tool windows—try locating the Solution Explorer and the Class View windows.

If you can’t find them there, bring both up by clicking Solution Explorer and Class View on the View menu.

Business Rules and the Business Facade

First, go to the Solution Explorer. The Duwamish sample consists of six separate projects—one for each subsystem that we’ve seen in the architectural overview.

The first two projects that we are going to look at are BusinessFacade and BusinessRules.

But before we even dig into the code, you will notice the References folder located in each project—expand it. This folder contains references to all external .NET assemblies that are being used in this project. This is equivalent to libraries in other languages or other platforms, but much easier from the start.

We will start exploring the code by opening the file OrderSystem.vb in the project BusinessFacade.

The code begins with two option statements. These statements repeat the default definitions: Strict type checking and explicit type definition are good programming style and should usually not be turned off. Also it is good practice to repeat the default definitions in the code just for clarity.

Below the option statements you’ll see the Imports declarations for all namespaces that are being used and references within the OrderSystem.vb compilation unit (file).

The next thing you’ll notice is that the Duwamish team used cascaded namespaces to organize their code into logical groups. The base namespace for the entire Duwamish sample is Duwamish7, and the subnamespace for this project is Duwamish7.BusinessFacade.
As we scroll down we find that OrderSystem.vb defines a single, public class OrderSystem that implements a simple, common wrapper around data access and business rules for the Duwamish order processing. To get a better idea of the code structure, use the key sequence CTRL+M, CTRL+O or select Outlining/Collapse to Definitions from the Edit menu.
You can get an overview over the implemented classes in each project using the Class View browser of Visual Studio.NET. On the uppermost level, you see the different projects. Under each project you see the namespaces that are defined in the projects. Within each namespace the defined classes with their respective members are listed. You can navigate to the class or member definition directly.

The class OrderSystem implements a public method GetOrderSummary that sums up all ordered items, calculates tax and shipping cost for an OrderData object and writes the calculated information back into that object as well as a public method AddOrder returning an integer that creates a new order.

When you expand the code block for GetOrderSummary you’ll see a few new Visual Basic.NET and .NET features at work.

First of all, the sum is calculated using the Decimal data-type, which gives you 28-digit precision for financial calculations. You see how the value is initialized.
If you scroll down a few more lines, you’ll see how the method accesses the BusinessRules. It creates a new instance of the Order class from the BusinessRules namespace using the new keyword and subsequently calls the CalculateTax and CalculateShipping methods on the new object before the method returns.

Since we have seen how the business rules are being used, we’re now certainly interested to see how they are implemented.

Go to the Class View tool window and expand the BusinessRules project node. You’ll find the Duwamish7 node for the main namespace, which you’re also expanding; likewise you do it for the BusinessRules namespace node.

If you now expand the Order class node you will find, among other things, the CalculateTax and CalculateShipping methods that we’ve seen being called in the business facade.

Double-click the CalculateTax node. The code that we see here, calculating sales tax at a fixed rate of 10% for everybody, is really not accurate for selling over the Internet, is it? We’re going to fix this a bit later.

And since you know all the navigational tools by now, we’re going to skip most of the “click here, click there” part from here on.

DataAccess

Open the source for the class DataAccess.Books. This class serves to access the catalog information for the Duwamish bookstore that is stored in a SQL Server database.

At the top of the class, you’ll see that it defines a few enumerations, which are all selectors for specific behavior of methods.

Select the expression NaturalLanguageResponseEnum and press CTRL+F; in the search dialog box just press RETURN and then ESC to leave it. Now the edit cursor should be at or around line 318.

Without really going into the details of what the code does, you can see the enumeration is used to select a certain execution path in a Select...Case statement. This is certainly more readable than using numbers.

SystemFramework

Before writing some code to resolve the problem with the tax rate that we’ve discovered above, we’re looking at one more class: SystemFramework.ApplicationAssert.

The class is responsible for creating diagnostic messages and is actually a quite cool example for the power of .NET diagnostics, but that’s not actually why we’re here.

Since the class implements mostly diagnostic functionality that we do not want to have in our production code at release time, conditional compilation is used to exclude some of the code using the familiar #if … #else … #endif syntax known from C and C++. (For a treat, modify the condition #if !DEBUG to #if DEBUG and see how the code coloring actually reflects that change instantly.)

Appendix—Exploring and Extending DuwamishOnline VB

[image: image55.png]B Extending Duwamish VB

=Extending Duwanish V8

Extending Duwamish

That should be enough looking around for now; let us build something.

The Problem

Remember that we stumbled over a problem with the tax calculation when we browsed through the Visual Basic.NET code. The issue at hand is that Duwamish flatly calculates a tax of 10% for all books sold, independent of buyer’s shipping address. And for most countries, including the United States and the members of the European Union, out-of-country sales are not subject to sales tax.

So, obviously this is a conceptual defect and we have to fix this. The approach we will choose is first to implement specialized tax calculation business rules for domestic sales and foreign sales.

Since the decision on which rule to apply is actually yet another business rule, we have to create that as well.

The Design

What we want to do is to reuse the Order class and its shipping cost calculation but want to specialize just the tax calculation part.

To do this we create two new classes, DomesticOrder and ForeignOrder, which both inherit from the Order class and specialize the behavior. The method CalculateTax of the Order class becomes therefore abstract and virtual, indicating that it can be overridden and that this actually must be done, because the base class does not contain any implementation.

The calculation for the class DomesticOrder is going to be identical to the current Order class, while the ForeignOrder variation will return zero.

To select the correct set of business rules, we will create a new class OrderRule, with a single, public and static method Create that receives a string identifying the country that the order is being shipped to and that will select and return the proper business rule object.

To make sure that nobody bypasses this mechanism, we will make the constructors of both, the DomesticOrder and ForeignOrder only internally accessible (using internal) so that code outside the BusinessRule project cannot access the constructors directly and, hence, cannot create the objects immediately without going through our Create method.

Let’s Do It

While we could make our work a little easier using the class wizard, we are actually going to create and implement the classes in a more hands-on way to show you more advanced options.

1. Go to the Solution Explorer and then to the BusinessRules project.

2. Right-click the project node, and then click Add New Item on the Add menu.

3. In the dialog box, select Local Project Items/Code in the categories pane and then select Class in the templates pane.

4. In the Name text box change the name to ForeignOrder.vb and then click OK.

VisualStudio.NET will add the new class file to the project and open the editor waiting for you to specify the correct namespace for the new class.

Insert as first line:

Namespace Duwamish7.BusinessRules

The editor automatically inserts an End Namespace tag below that line. Move this line to the end of the file.

Now add a new class and file DomesticOrder.vb in the same way.

The following instructions also apply to both of the classes that you just created:

Go to the class definition and let the class inherit the base class Order. To achieve this, insert a line Inherits Order within the class declaration. Do that for both classes.

At this point, we have two specialized classes that properly derive from the Order class.

Now open the Order class and go to the CalculateTax method and perform the following steps:

5. Select the entire method’s code and copy it to the clipboard for now using CTRL+C.

6. Prefix the method with the keyword MustOverride, indicating that the method is not implemented in this class and is designed to be overridden by specialized classes.

7. Since there is now an abstract method, the entire class is abstract (cannot be instantiated) and should be marked as such. Hence, prefix the class declaration with MustInherit as well.

8. Delete all implementation code between and including the End Function of the CalculateTax method.

We have now made this method abstract and are going to implement it in the specialized classes.

Go back to the DomesticOrder class and:

9. Paste the code that you still have on the clipboard right below the Inherits clause.

(Gee, lost that code on the clipboard by accident? Click Toolbox on the View menu and locate the Clipboard Ring. Chances are excellent that it is still there.)

10. Prefix the method with the Overrides keyword, indicating that your intent is to override the abstract method declared in the Order base class.

11. Since we need to deal with the OrderData class from the namespace Duwamish7.Common.Data now, reference it by adding an Imports clause at the top of the file, just above the namespace declaration.

12. Do the same for the Duwamish7.SystemFramework namespace that we need for the calls to the diagnostics methods.

Now go to the ForeignOrder class and do everything just the same way, except for replacing the implementation of the CalculateTax method with a plain CalculateTax = 0 expression.

Good. Where are we now? We have two distinct sets of business rules for domestic and foreign orders based on a common base class. Let us try building the solution with CTRL+SHIFT+B (or click Build Solution on the Build menu) to see how we are doing.

If you followed all the instructions, the build should return with two errors with the same description: “Cannot create an instance of the abstract class or interface Duwamish7.BusinessRules.Order.” That’s certainly expected, since we made the class Order abstract ourselves. Just keep the Task List around as is.

To hook the new rules into the applications, create a new class OrderRule and add it to the Duwamish7.BusinessRules namespace (you’ve learned all the required steps above).

In that new class, add a shared (class-)method with the following signature:

Public Shared Order Create(ByVal Country As String)

The implementation of the method will be pretty straightforward; you are free to use your own country’s name in the implementation. The method should look approximately like this:

Public Shared Function Create(
 ByVal Country As String) As Order

Select Country

Case "Germany"

Create = new DomesticOrder()

Case Else

Create = new ForeignOrder()

End Select

End Function
Now look at the two entries that sit waiting in your Task List. If you double-click the entries, they will take you right two the last two places where we need to make changes.

The offending statements are of course those that create the BusinessRules.Order class. Replace the expression with the following lengthy expression:

OrderRule.Create(CStr(
 Order.Tables(OrderData.SHIPPING_ADDRESS_TABLE).
 Rows(0)(OrderData.COUNTRY_FIELD)
))
With this expression we are creating the rule based on the shipping address country.

And we’re done. Of course, foreign shipping cost is different than domestic shipping cost. But now you are able to figure that out yourself. Enjoy.

Legal Notices

[image: image56.png]B Legal Notices

Unpbished wrk. & 2001 Morssot Corporton. A itz
e

Mrosatt, tliSense, isual B, sual S, and
WS 3 ethe regtared radar s or rsdermares of

Mersort Corporaton i the Unked Sutes andior ther

e rames of actual comparies and products mertioned
Rere sy b i S4SmAS of el ecpacive sner.

Unpublished work. © 2001 Microsoft Corporation. All rights reserved.
Microsoft, IntelliSense, MSDN, Visual Basic, Visual Studio, and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

