
1

1 C# and the .NET Framework

C# (pronounced: see sharp) is a programming language developed by Microsoft
for the .NET platform. Although .NET programs can be written in many different
languages (including C++, Visual Basic, Java, Fortran, Cobol and Eiffel), Micro-
soft developed this new "in-house" language in order to exploit the full potential
of .NET. C# is an object-oriented language that looks like Java at first sight but
goes beyond Java in its capabilities. It has all the features required to develop ap-
plications making full use of the latest in software technology.

C# is not a revolutionary language. It is more a combination of Java, C++ and
Visual Basic. The aim has been to adopt the best features of each of these lan-
guages while avoiding more complex features. C# has been developed in a careful
and controlled way by a small team lead by Anders Hejlsberg ([HWG04],
[C#Std]). Hejlsberg is an experienced language expert. At Borland he was the chief
designer of Delphi. He has a reputation for designing his languages with the needs
of practitioners in mind.

This chapter is intended as a summary of the main features of C#. Because C#
is so similar to Java, we have decided to compare the features of the two lan-
guages, assuming that the reader is already familiar with a language like Java or
C++. We briefly discuss .NET at the end of the this chapter, because any C# devel-
oper needs to know the basic concepts of .NET.

1.1 Similarities between C# and Java

At first sight, C# programs look much like Java programs. Any Java programmer
should be able to read them. As well as having almost identical syntax, the follow-
ing concepts have been carried across from Java:

q Object-orientation. Like Java, C# is an object-oriented language with single
inheritance. Classes can inherit from just one base class but can implement
several interfaces.

q Type safety. C# is a type-safe language. Programming errors that arise from
incompatible types in statements and expressions are trapped by the com-
piler. In applications, arbitrary pointer arithmetic or unchecked type casts

2 1 C# and the .NET Framework

are not allowed as they are in C++. At run time there are checks to ensure
that array indices lie in the appropriate range, that objects are not refer-
enced via uninitialized pointers and that a type cast leads to a well-defined
result.

q Garbage collection. Dynamically allocated objects are not released by the
programmer, but are automatically disposed of by a garbage collector as
soon as they are no longer referenced. This eliminates many awkward er-
rors that can occur, for example, in C++ programs.

q Namespaces. What Java calls packages, C# calls namespaces. A namespace
is a collection of type declarations. It allows the same names to be used in
different contexts.

q Threads. C# supports lightweight parallel processes in the form of threads.
As in Java, there are mechanisms for synchronization and communication
between threads.

q Reflection. As in Java, type information about a program can be accessed at
run time, classes can be loaded dynamically, and it is even possible to com-
pose object programs at run time.

q Libraries. Many types in the C# library resemble those in the Java library.
There are familiar classes such as Object, String, ICollection and Stream, often
even with the same methods as in Java.

Various features are also taken from C++, for example operator overloading,
pointer arithmetic in system-level classes (which must be marked as unsafe) as well
as some syntactical details, for example in connection with inheritance. The fo-
reach loop is an example of a feature taken from Visual Basic.

1.2 Differences between C# and Java

Beside these similarities, C# has several characteristics that go beyond Java. Most
of them also apply to the other .NET languages:

q Reference parameters. Parameters can be passed not only by value , as in
Java, but also by reference. This means that input parameters can be used
as well as output and transient parameters.

q Objects on the stack. Whereas in Java all objects are kept on the heap, in
C# an object can also be stored on the method call stack. Such objects are
lightweight, that is, they make no demands of the garbage collector.

q Block matrices. The Java storage model for multidimensional arrays is not
efficient enough for numerical applications. C# allows the programmer to
choose whether to have a matrix laid out as in Java (that is, as an array of
arrays) or as a compact block matrix, as in C, Fortran or Pascal.

q Enumerations. As in Pascal or C, there are enumeration types with values
denoted by names.

1.3 The .NET Framework 3

q goto statement. The much-maligned goto statement has been reintroduced
in C#, but with restrictions that make it scarcely possible to misuse it.

q Uniform type system. In C#, all types are derived from the object type. In
contrast to Java, numbers or character values can also be stored in object
variables. The C# mechanism for this is called boxing.

q Attributes. The programmer can attach metadata to classes, methods or
fields. This information can be accessed at run time by means of reflection.
.NET uses this mechanism, for example, for serializing data structures.

q Versioning. Libraries are given a version number during compilation. This
means that a library can be available in several versions at the same time.
Each application uses the version of the library used for compilation and
testing.

Finally there are many features of C# that are convenient to use, although they do
not really increase the power of the language. They can be described as "syntactic
sugar", because things that can be done in other languages are more straightfor-
ward and elegant in C#. They include the following:

q Properties and events. These features facilitate component technology.
Properties are special fields of an object. When they are accessed the system
automatically calls getter and setter methods. Events can be declared and
triggered by components and handled by other components.

q Indexers. As with arrays, an index operator can be declared for custom col-
lections via getter and setter methods.

q Delegates . Delegates are essentially the same as procedure variables in Pas-
cal and function pointers in C. However, they are more powerful. For ex-
ample, several methods can be stored in a delegate variable at the same
time.

q foreach loop. This loop statement is a convenient way of iterating through
arrays, lists or sets.

q Boxing/unboxing . Values such as numbers or characters can be assigned to
variables of type object. To do this they are automatically wrapped into an
auxiliary object (boxing). When they are assigned to a number or character
variable, they are automatically unwrapped again (unboxing). This feature
allows the construction of generic container types.

1.3 The .NET Framework

Anyone programming in C# will eventually need to get to grips with the .NET
Framework, the Windows component for which C# was specifically developed. It
is a kind of layer on top of Windows (and perhaps other operating systems in the
future, see Fig. 1.1), with two main components:

4 1 C# and the .NET Framework

q A run-time environment (the common language runtime), providing auto-
matic garbage collection, security, versioning and, above all, interoperabil-
ity between programs written in different languages.

q An object-oriented class library , providing a rich set of functionality for
graphical user interfaces (Windows forms), web interfaces (ASP.NET), da-
tabase connectivity (ADO.NET), collections, threads, reflection and much
more. In many cases it replaces the current Windows API and goes beyond
it.

Fig. 1.1 Outline of the .NET Framework architecture

Although .NET was developed by Microsoft, it is based on open standards. For
example, the ECMA-335 standard [CLI] defines the common language runtime
and parts of the class library, the ECMA-334 standard [C#Std] describes the C#
language, and general standards such as SOAP, WSDL or UDDI are used for web
services. As part of an open source project ([Mono]), the .NET Framework is cur-
rently being ported to Linux, and even Microsoft is publishing large parts of the
CLR source code via [SSCLI] ([SNS03]).

This section summarizes the main components of the .NET Framework. For a
more detailed description, please refer to [MBBW04], [Rich02] or [Rob01]. Parts
of the class library are described in Chapter 18.

Common Language Runtime

The common language runtime (CLR) is the run-time environment under which
.NET programs are executed, supporting features like garbage collection, security
and interoperability [MR04].

Like the Java environment, the CLR is based on a virtual machine, with its
own instruction set (CIL common intermediate language) into which programs
written in all .NET languages are translated. Just before they are run (just in time)
CIL programs are converted into the native machine language (e.g. Intel code) (see
Fig. 1.2). The CIL code guarantees interoperability between different languages as
well as code portability, while JIT compilation (just-in-time compilation), ensures
that programs are executed efficiently.

Operating system (Windows, Unix, Linux, MacOS X...

Run-time environment (common language runtime)

Class library

.NET applications

1.3 The .NET Framework 5

Fig. 1.2 Source code, CIL code and machine code

Unfortunately, though, for different languages to be able to cooperate it is not
enough for them just to be translated into CIL. They must also use the same sort
of data types. This is why the CLR defines a common type system (CTS) defining
how classes, interfaces and other types are represented. The CTS not only allows a
class implemented in C# to be used in a Visual Basic program, but it even allows
the C# class to be extended by a subclass written in Visual Basic. Similarly, an ex-
ception raised by a C# program can be handled by a program written in any other
.NET language.

The CLR offers mechanisms for making .NET programs safer and more ro-
bust. These include the garbage collector, which is responsible for reclaiming the
space used by objects once they are no longer needed. In older languages such as C
and C++, it was up to the programmer to release object space. This meant that the
space was sometimes released by mistake when it was still in use by other objects.
This left the other objects with nowhere to go, potentially destroying unrelated
storage areas. Similarly, a programmer could forget to release an object even
though it was no longer being referenced. This then remained in the memory as a
memory leak, wasting space. Such errors are hard to identify and locate, but
thanks to the garbage collector, they cannot occur in .NET.

When a program is loaded and compiled into machine code, the CLR uses a
verifier to check that the type rules of the CTS have not been violated. For exam-
ple, it is illegal to treat a number as an address and use it to access storage areas
that belong to other programs.

C# C++ VB ...

C#
compiler

C++
compiler

VB
compiler

...-
compiler

CIL code
(+ metadata)

Loader
Verifier

JIT compiler

Machine code

if (a > b) max = a; else max = b;

C# code

IL_0004: ldloc.0
IL_0005: ldloc.1
IL_0006: ble.s IL_000c
IL_0008: ldloc.0
IL_0009: stloc.2
IL_000a: br.s IL_000e
IL_000c: ldloc.1
IL_000d: stloc.2

mov ebx,-4[ebp]
mov edx,-8[ebp]
cmp ebx,edx
jle 17
mov ebx,-4[ebp]
mov -12[ebp],ebx
...

CIL code

Machine code

6 1 C# and the .NET Framework

Assemblies

.NET supports component-based software development. The components are
called assemblies and are the smallest units that can be individually deployed. An
assembly is a collection of classes and other resources (for example, images). It is
stored either as an executable EXE file or as a DLL file (dynamic link library) (see
Fig. 1.3). In some cases an assembly is even made up of multiple files.

Fig. 1.3 Prog.exe assembly generated by compiler

Each assembly also contains metadata in addition to code. The metadata holds the
interface definition of the classes, fields, methods and other program elements in
the assembly. An assembly also contains a manifest, which can be thought of as a
table of contents. The manifest renders assemblies self-describing and can be in-
spected and used by loaders, compilers and other tools, by means of reflection.

Assemblies are also used for version control. Each has a multi-level version
number that also applies to all the classes within the assembly. When a class is
compiled, the version numbers of classes referenced from other assemblies are re-
corded in its object code. The loader then asks for those classes (i.e. assemblies)
that correspond to the expected version numbers. In .NET, several DLLs with the
same name but different version numbers can coexist without conflicting with
each other (side-by-side execution). This spells the end of the "DLL hell" in Win-
dows, where the installation of new software could cause old DLLs to be over-
written by new ones with the same names, causing the existing software to sud-
denly stop working.

Another advantage is that assemblies no longer have to be recorded in the
Windows registry. They are simply copied into the application directory or into
the so-called global assembly cache, and they are equally easy to remove when
they are no longer needed.

class A {...}
Prog.cs

class B {...}
class C {...}

Lib.cs

Compiler

Manifest

CIL code for A

Metadata

CIL code for B

CIL code for C

Prog.exe

Loader

Version number
Public key
Interface definition for
- classes
- methods
- fields
- ...

1.3 The .NET Framework 7

Assemblies are effectively the successors of COM components. Unlike COM
objects (component object model), assemblies do not need to be described by an
IDL (interface definition language) because they contain comprehensive metadata
that has been gathered by the compiler from the source code. The common type
system guarantees that software written in different .NET languages uses the same
sort of metadata and is thus binary compatible. However, investment in COM
components is not lost. It is still possible to use COM components from .NET
classes and vice versa (see Chapter 17).

ADO.NET

ADO.NET comprises all the classes of the .NET library that are concerned with
accessing databases and other data sources (such as XML files). It has a predeces-
sor technology called ADO (ActiveX Data Objects), with which it only shares a
name. ADO.NET is object-oriented and therefore more structured and straight-
forward to use

ADO.NET supports the relational data model, with transactions and locking
mechanisms. Therefore it is independent of different data providers and database
architectures. The differences between concrete data sources like MS SQL Server,
OLE DB (Object Linking and Embedding Database) and ODBC (Open Database
Connectivity) are abstracted away with common interfaces.

Database access can be either connection-oriented or connectionless. In con-
nection-oriented access, a permanent connection to a data source is established. In
connectionless access, a snapshot of a part of the database is fetched into a Data-

Set object and then processed locally. In both cases, SQL statements (Structured
Query Language) can normally be used to access the data.

ASP.NET

ASP.NET is the part of the .NET technology that deals with programming dy-
namic web pages. Its name is reminiscent of the predecessor technology ASP
(Active Server Pages). However, the programming model is fundamentally differ-
ent.

With ASP.NET, web pages are constructed dynamically on the server from
current data and are sent to the client in the form of pure HTML, so that any web
browser can display them. In contrast to ASP, ASP.NET uses an object-oriented
model. Web pages, as well as the controls that appear in them, are objects whose
fields and methods can be accessed in programs. All this is done in a compiled lan-
guage such as C# or Visual Basic .NET and not, as in ASP, in an interpreted lan-
guage such as JavaScript or VBScript. This means that web pages can take advan-
tage of the entire class library of .NET.

8 1 C# and the .NET Framework

User input is handled in an event-driven way. When a user fills out a text field,
clicks a button or selects an item from a list, this raises an event that can be han-
dled by code on the server side. Although the server is stateless—as is usual for the
Internet—state information is retained automatically between individual user in-
teractions, in fact in the HTML code itself. This represents a considerable simpli-
fication over the former programming model, where it was the programmer who
was responsible for maintaining state information.

ASP.NET offers a rich library of controls that go far beyond what is supported
by HTML, although all controls are eventually translated to HTML. Program-
mers can even build their own controls and thus adapt the user interface of their
web pages to their particular needs. It is particularly straightforward to display
the results of database queries as lists and tables, since ASP.NET has largely auto-
mated this. Validators are a further new feature. They allow user input to be
checked for validity.

The Visual Studio .NET development environment allows the user interface of
a web page to be built interactively, in a way familiar from the development of
desktop applications. Controls can be dragged into windows with the mouse. Val-
ues of properties can be assigned using menus and property windows, and meth-
ods can be specified that will be called in response to user input. All this sweeps
away the difference between programming desktop applications and web applica-
tions and simplifies the development of online stores and pages that show fre-
quently updated information (for example, stock data). ASP.NET is explained in
more detail in Section 19.3.

Web services

Web services are regarded as one of the core features of .NET technology, al-
though they also exist outside .NET. They work via remote procedure calls using
protocols such as HTTP and SOAP (an application of XML).

The Internet has proved itself to be tremendously powerful for accessing infor-
mation and services distributed around the world. Currently, access is mainly
through web browsers such as Internet Explorer or Netscape Navigator. Web serv-
ices, on the other hand, allow a new style of cooperation between applications by
making them communicate without web browsers. Ordinary desktop applications
can fetch information such as current exchange rates or booking data from one or
more web services that are running as methods of applications on other computers
and which respond over the Internet.

The calls and their parameters are generally coded to conform to SOAP
[SOAP], an XML-based standard that is supported by most large firms. Program-
mers need to know nothing of this. They call a web service in just the same way as
a normal method and .NET takes care of translating the call into SOAP, sending it
over the Internet and decoding it on the target machine. On the target machine,

1.4 Exercises 9

the chosen method is invoked and its result is transmitted back to the caller trans-
parently, again using SOAP. The caller and the callee can therefore be written in
quite different languages and can run under different operating systems.

In order for .NET to be able to carry out the coding and decoding correctly,
the web services, together with their parameters, are described in WSDL (Web Ser-
vices Description Language [WSDL]). This is also done automatically by .NET.
Web services are described further in Section 19.2.

1.4 Exercises1

1. Suitability of C# for large-scale software projects. To what extent do the fea-
tures of C# help developers of large-scale software projects?

2. Features of .NET. What are the main features of the .NET Framework? Which
of them resemble the Java environment, and which are new?

3. Security. Give reasons why C# is a safe language. Name the kind of program-
ming errors or hazardous situations that would be trapped by the C# compiler
or the CLR?

4. Interoperability. What makes .NET a platform on which programs written in
different languages can cooperate seamlessly?

5. Assemblies. What makes .NET assemblies easier to install and de-install than
COM objects?

6. Internet resources . Visit these web pages [MS], [MSDN], [GotD] and [Dev] for
an overview of the .NET Framework and C#.

7. Mono. Visit the [Mono] web site to find out more about the project porting
.NET to Linux.

1. Example solutions to the exercises can be found in [JKU].

10 1 C# and the .NET Framework

